Spaces:
Running
Running
Joshua Lochner
commited on
Commit
·
dccb47b
1
Parent(s):
67d0193
Separate missing and incorrect detection logic
Browse files- src/evaluate.py +140 -78
src/evaluate.py
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
|
2 |
from model import get_model_tokenizer_classifier, InferenceArguments
|
3 |
-
from utils import jaccard
|
4 |
from transformers import HfArgumentParser
|
5 |
-
from preprocess import get_words
|
6 |
from shared import GeneralArguments, DatasetArguments
|
7 |
from predict import predict
|
8 |
from segment import extract_segment, word_start, word_end, SegmentationArguments, add_labels_to_words
|
@@ -31,6 +31,19 @@ class EvaluationArguments(InferenceArguments):
|
|
31 |
}
|
32 |
)
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
def attach_predictions_to_sponsor_segments(predictions, sponsor_segments):
|
36 |
"""Attach sponsor segments to closest prediction"""
|
@@ -46,7 +59,7 @@ def attach_predictions_to_sponsor_segments(predictions, sponsor_segments):
|
|
46 |
prediction['best_overlap'] = j
|
47 |
prediction['best_sponsorship'] = sponsor_segment
|
48 |
|
49 |
-
|
50 |
|
51 |
|
52 |
def calculate_metrics(labelled_words, predictions):
|
@@ -130,6 +143,10 @@ def main():
|
|
130 |
|
131 |
evaluation_args, dataset_args, segmentation_args, general_args = hf_parser.parse_args_into_dataclasses()
|
132 |
|
|
|
|
|
|
|
|
|
133 |
# Load labelled data:
|
134 |
final_path = os.path.join(
|
135 |
dataset_args.data_dir, dataset_args.processed_file)
|
@@ -158,14 +175,22 @@ def main():
|
|
158 |
if evaluation_args.max_videos is not None:
|
159 |
video_ids = video_ids[:evaluation_args.max_videos]
|
160 |
|
161 |
-
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
|
|
|
|
167 |
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
try:
|
171 |
with tqdm(video_ids) as progress:
|
@@ -176,53 +201,77 @@ def main():
|
|
176 |
if not words:
|
177 |
continue
|
178 |
|
179 |
-
# Make predictions
|
180 |
-
predictions = predict(video_id, model, tokenizer, segmentation_args,
|
181 |
-
classifier=classifier,
|
182 |
-
min_probability=evaluation_args.min_probability)
|
183 |
-
|
184 |
# Get labels
|
185 |
sponsor_segments = final_data.get(video_id)
|
186 |
-
if sponsor_segments:
|
187 |
-
labelled_words = add_labels_to_words(
|
188 |
-
words, sponsor_segments)
|
189 |
-
met = calculate_metrics(labelled_words, predictions)
|
190 |
-
met['video_id'] = video_id
|
191 |
|
192 |
-
|
|
|
|
|
193 |
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
'f-score': total_fscore/len(out_metrics)
|
204 |
-
})
|
205 |
|
206 |
-
|
207 |
-
|
|
|
208 |
|
209 |
-
|
210 |
-
|
211 |
-
prediction for prediction in predictions if prediction['best_sponsorship'] is None]
|
212 |
|
213 |
-
|
214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
segments_to_check = []
|
217 |
texts = [] # Texts to send through tokenizer
|
218 |
for sponsor_segment in sponsor_segments:
|
219 |
segment_words = extract_segment(
|
220 |
words, sponsor_segment['start'], sponsor_segment['end'])
|
221 |
-
sponsor_segment['text'] = ' '.join(
|
222 |
-
|
223 |
|
224 |
-
duration = sponsor_segment['end'] -
|
225 |
-
|
|
|
|
|
226 |
if wps < 1.5:
|
227 |
continue
|
228 |
|
@@ -231,18 +280,24 @@ def main():
|
|
231 |
if sponsor_segment['locked']:
|
232 |
continue
|
233 |
|
|
|
|
|
234 |
texts.append(sponsor_segment['cleaned_text'])
|
235 |
segments_to_check.append(sponsor_segment)
|
236 |
|
237 |
-
if segments_to_check: #
|
238 |
|
239 |
segments_scores = classifier(texts)
|
240 |
|
|
|
241 |
for segment, scores in zip(segments_to_check, segments_scores):
|
|
|
|
|
242 |
prediction = max(scores, key=lambda x: x['score'])
|
243 |
predicted_category = prediction['label'].lower()
|
244 |
|
245 |
if predicted_category == segment['category']:
|
|
|
246 |
continue # Ignore correct segments
|
247 |
|
248 |
segment.update({
|
@@ -252,18 +307,19 @@ def main():
|
|
252 |
|
253 |
incorrect_segments.append(segment)
|
254 |
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
|
261 |
if missed_segments or incorrect_segments:
|
262 |
-
for z in missed_segments:
|
263 |
-
# Attach original text to missed segments
|
264 |
-
# (Already added to incorrect segments)
|
265 |
-
z['text'] = ' '.join(x['text']
|
266 |
-
for x in z.pop('words', []))
|
267 |
|
268 |
if evaluation_args.output_as_json:
|
269 |
to_print = {'video_id': video_id}
|
@@ -274,23 +330,25 @@ def main():
|
|
274 |
if incorrect_segments:
|
275 |
to_print['incorrect'] = incorrect_segments
|
276 |
|
277 |
-
|
|
|
278 |
else:
|
279 |
-
|
280 |
f'Issues identified for {video_id} (#{video_index})')
|
281 |
# Potentially missed segments (model predicted, but not in database)
|
282 |
if missed_segments:
|
283 |
-
|
284 |
segments_to_submit = []
|
285 |
for i, missed_segment in enumerate(missed_segments, start=1):
|
286 |
-
|
287 |
missed_segment['start']), '-->', seconds_to_time(missed_segment['end']))
|
288 |
-
|
289 |
-
|
290 |
-
|
|
|
291 |
if 'probability' in missed_segment:
|
292 |
-
|
293 |
-
|
294 |
|
295 |
segments_to_submit.append({
|
296 |
'segment': [missed_segment['start'], missed_segment['end']],
|
@@ -299,33 +357,37 @@ def main():
|
|
299 |
})
|
300 |
|
301 |
json_data = quote(json.dumps(segments_to_submit))
|
302 |
-
|
303 |
f'\tSubmit: https://www.youtube.com/watch?v={video_id}#segments={json_data}')
|
304 |
|
305 |
# Incorrect segments (in database, but incorrectly classified)
|
306 |
if incorrect_segments:
|
307 |
-
|
308 |
for i, incorrect_segment in enumerate(incorrect_segments, start=1):
|
309 |
-
|
310 |
incorrect_segment['start']), '-->', seconds_to_time(incorrect_segment['end']))
|
311 |
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
|
|
|
|
|
|
|
|
324 |
for item in incorrect_segment['scores']:
|
325 |
-
|
326 |
f"\t\t\t{item['label']}: {item['score']}")
|
327 |
|
328 |
-
|
329 |
|
330 |
except KeyboardInterrupt:
|
331 |
pass
|
|
|
1 |
|
2 |
from model import get_model_tokenizer_classifier, InferenceArguments
|
3 |
+
from utils import jaccard, safe_print
|
4 |
from transformers import HfArgumentParser
|
5 |
+
from preprocess import get_words, clean_text
|
6 |
from shared import GeneralArguments, DatasetArguments
|
7 |
from predict import predict
|
8 |
from segment import extract_segment, word_start, word_end, SegmentationArguments, add_labels_to_words
|
|
|
31 |
}
|
32 |
)
|
33 |
|
34 |
+
skip_missing: bool = field(
|
35 |
+
default=False,
|
36 |
+
metadata={
|
37 |
+
'help': 'Whether to skip checking for missing segments. If False, predictions will be made.'
|
38 |
+
}
|
39 |
+
)
|
40 |
+
skip_incorrect: bool = field(
|
41 |
+
default=False,
|
42 |
+
metadata={
|
43 |
+
'help': 'Whether to skip checking for incorrect segments. If False, classifications will be made on existing segments.'
|
44 |
+
}
|
45 |
+
)
|
46 |
+
|
47 |
|
48 |
def attach_predictions_to_sponsor_segments(predictions, sponsor_segments):
|
49 |
"""Attach sponsor segments to closest prediction"""
|
|
|
59 |
prediction['best_overlap'] = j
|
60 |
prediction['best_sponsorship'] = sponsor_segment
|
61 |
|
62 |
+
return sponsor_segments
|
63 |
|
64 |
|
65 |
def calculate_metrics(labelled_words, predictions):
|
|
|
143 |
|
144 |
evaluation_args, dataset_args, segmentation_args, general_args = hf_parser.parse_args_into_dataclasses()
|
145 |
|
146 |
+
if evaluation_args.skip_missing and evaluation_args.skip_incorrect:
|
147 |
+
logger.error('ERROR: Nothing to do')
|
148 |
+
return
|
149 |
+
|
150 |
# Load labelled data:
|
151 |
final_path = os.path.join(
|
152 |
dataset_args.data_dir, dataset_args.processed_file)
|
|
|
175 |
if evaluation_args.max_videos is not None:
|
176 |
video_ids = video_ids[:evaluation_args.max_videos]
|
177 |
|
178 |
+
out_metrics = []
|
179 |
|
180 |
+
all_metrics = {}
|
181 |
+
if not evaluation_args.skip_missing:
|
182 |
+
all_metrics['total_prediction_accuracy'] = 0
|
183 |
+
all_metrics['total_prediction_precision'] = 0
|
184 |
+
all_metrics['total_prediction_recall'] = 0
|
185 |
+
all_metrics['total_prediction_fscore'] = 0
|
186 |
|
187 |
+
if not evaluation_args.skip_incorrect:
|
188 |
+
all_metrics['classifier_segment_correct'] = 0
|
189 |
+
all_metrics['classifier_segment_count'] = 0
|
190 |
+
|
191 |
+
metric_count = 0
|
192 |
+
|
193 |
+
postfix_info = {}
|
194 |
|
195 |
try:
|
196 |
with tqdm(video_ids) as progress:
|
|
|
201 |
if not words:
|
202 |
continue
|
203 |
|
|
|
|
|
|
|
|
|
|
|
204 |
# Get labels
|
205 |
sponsor_segments = final_data.get(video_id)
|
|
|
|
|
|
|
|
|
|
|
206 |
|
207 |
+
# Reset previous
|
208 |
+
missed_segments = []
|
209 |
+
incorrect_segments = []
|
210 |
|
211 |
+
current_metrics = {
|
212 |
+
'video_id': video_id
|
213 |
+
}
|
214 |
+
metric_count += 1
|
215 |
|
216 |
+
if not evaluation_args.skip_missing: # Make predictions
|
217 |
+
predictions = predict(video_id, model, tokenizer, segmentation_args,
|
218 |
+
classifier=classifier,
|
219 |
+
min_probability=evaluation_args.min_probability)
|
|
|
|
|
220 |
|
221 |
+
if sponsor_segments:
|
222 |
+
labelled_words = add_labels_to_words(
|
223 |
+
words, sponsor_segments)
|
224 |
|
225 |
+
current_metrics.update(
|
226 |
+
calculate_metrics(labelled_words, predictions))
|
|
|
227 |
|
228 |
+
all_metrics['total_prediction_accuracy'] += current_metrics['accuracy']
|
229 |
+
all_metrics['total_prediction_precision'] += current_metrics['precision']
|
230 |
+
all_metrics['total_prediction_recall'] += current_metrics['recall']
|
231 |
+
all_metrics['total_prediction_fscore'] += current_metrics['f-score']
|
232 |
+
|
233 |
+
# Just for display purposes
|
234 |
+
postfix_info.update({
|
235 |
+
'accuracy': all_metrics['total_prediction_accuracy']/metric_count,
|
236 |
+
'precision': all_metrics['total_prediction_precision']/metric_count,
|
237 |
+
'recall': all_metrics['total_prediction_recall']/metric_count,
|
238 |
+
'f-score': all_metrics['total_prediction_fscore']/metric_count,
|
239 |
+
})
|
240 |
+
|
241 |
+
sponsor_segments = attach_predictions_to_sponsor_segments(
|
242 |
+
predictions, sponsor_segments)
|
243 |
+
|
244 |
+
# Identify possible issues:
|
245 |
+
for prediction in predictions:
|
246 |
+
if prediction['best_sponsorship'] is not None:
|
247 |
+
continue
|
248 |
+
|
249 |
+
prediction_words = prediction.pop('words', [])
|
250 |
+
|
251 |
+
# Attach original text to missed segments
|
252 |
+
prediction['text'] = ' '.join(
|
253 |
+
x['text'] for x in prediction_words)
|
254 |
+
missed_segments.append(prediction)
|
255 |
+
|
256 |
+
else:
|
257 |
+
# Not in database (all segments missed)
|
258 |
+
missed_segments = predictions
|
259 |
+
|
260 |
+
if not evaluation_args.skip_incorrect and sponsor_segments:
|
261 |
+
# Check for incorrect segments using the classifier
|
262 |
|
263 |
segments_to_check = []
|
264 |
texts = [] # Texts to send through tokenizer
|
265 |
for sponsor_segment in sponsor_segments:
|
266 |
segment_words = extract_segment(
|
267 |
words, sponsor_segment['start'], sponsor_segment['end'])
|
268 |
+
sponsor_segment['text'] = ' '.join(
|
269 |
+
x['text'] for x in segment_words)
|
270 |
|
271 |
+
duration = sponsor_segment['end'] - \
|
272 |
+
sponsor_segment['start']
|
273 |
+
wps = (len(segment_words) /
|
274 |
+
duration) if duration > 0 else 0
|
275 |
if wps < 1.5:
|
276 |
continue
|
277 |
|
|
|
280 |
if sponsor_segment['locked']:
|
281 |
continue
|
282 |
|
283 |
+
sponsor_segment['cleaned_text'] = clean_text(
|
284 |
+
sponsor_segment['text'])
|
285 |
texts.append(sponsor_segment['cleaned_text'])
|
286 |
segments_to_check.append(sponsor_segment)
|
287 |
|
288 |
+
if segments_to_check: # Some segments to check
|
289 |
|
290 |
segments_scores = classifier(texts)
|
291 |
|
292 |
+
num_correct = 0
|
293 |
for segment, scores in zip(segments_to_check, segments_scores):
|
294 |
+
all_metrics['classifier_segment_count'] += 1
|
295 |
+
|
296 |
prediction = max(scores, key=lambda x: x['score'])
|
297 |
predicted_category = prediction['label'].lower()
|
298 |
|
299 |
if predicted_category == segment['category']:
|
300 |
+
num_correct += 1
|
301 |
continue # Ignore correct segments
|
302 |
|
303 |
segment.update({
|
|
|
307 |
|
308 |
incorrect_segments.append(segment)
|
309 |
|
310 |
+
current_metrics['num_segments'] = len(
|
311 |
+
segments_to_check)
|
312 |
+
current_metrics['classified_correct'] = num_correct
|
313 |
+
|
314 |
+
all_metrics['classifier_segment_correct'] += num_correct
|
315 |
+
|
316 |
+
postfix_info['classifier_accuracy'] = all_metrics['classifier_segment_correct'] / \
|
317 |
+
all_metrics['classifier_segment_count']
|
318 |
+
|
319 |
+
out_metrics.append(current_metrics)
|
320 |
+
progress.set_postfix(postfix_info)
|
321 |
|
322 |
if missed_segments or incorrect_segments:
|
|
|
|
|
|
|
|
|
|
|
323 |
|
324 |
if evaluation_args.output_as_json:
|
325 |
to_print = {'video_id': video_id}
|
|
|
330 |
if incorrect_segments:
|
331 |
to_print['incorrect'] = incorrect_segments
|
332 |
|
333 |
+
safe_print(json.dumps(to_print))
|
334 |
+
|
335 |
else:
|
336 |
+
safe_print(
|
337 |
f'Issues identified for {video_id} (#{video_index})')
|
338 |
# Potentially missed segments (model predicted, but not in database)
|
339 |
if missed_segments:
|
340 |
+
safe_print(' - Missed segments:')
|
341 |
segments_to_submit = []
|
342 |
for i, missed_segment in enumerate(missed_segments, start=1):
|
343 |
+
safe_print(f'\t#{i}:', seconds_to_time(
|
344 |
missed_segment['start']), '-->', seconds_to_time(missed_segment['end']))
|
345 |
+
safe_print('\t\tText: "',
|
346 |
+
missed_segment['text'], '"', sep='')
|
347 |
+
safe_print('\t\tCategory:',
|
348 |
+
missed_segment.get('category'))
|
349 |
if 'probability' in missed_segment:
|
350 |
+
safe_print('\t\tProbability:',
|
351 |
+
missed_segment['probability'])
|
352 |
|
353 |
segments_to_submit.append({
|
354 |
'segment': [missed_segment['start'], missed_segment['end']],
|
|
|
357 |
})
|
358 |
|
359 |
json_data = quote(json.dumps(segments_to_submit))
|
360 |
+
safe_print(
|
361 |
f'\tSubmit: https://www.youtube.com/watch?v={video_id}#segments={json_data}')
|
362 |
|
363 |
# Incorrect segments (in database, but incorrectly classified)
|
364 |
if incorrect_segments:
|
365 |
+
safe_print(' - Incorrect segments:')
|
366 |
for i, incorrect_segment in enumerate(incorrect_segments, start=1):
|
367 |
+
safe_print(f'\t#{i}:', seconds_to_time(
|
368 |
incorrect_segment['start']), '-->', seconds_to_time(incorrect_segment['end']))
|
369 |
|
370 |
+
safe_print(
|
371 |
+
'\t\tText: "', incorrect_segment['text'], '"', sep='')
|
372 |
+
safe_print(
|
373 |
+
'\t\tUUID:', incorrect_segment['uuid'])
|
374 |
+
safe_print(
|
375 |
+
'\t\tVotes:', incorrect_segment['votes'])
|
376 |
+
safe_print(
|
377 |
+
'\t\tViews:', incorrect_segment['views'])
|
378 |
+
safe_print('\t\tLocked:',
|
379 |
+
incorrect_segment['locked'])
|
380 |
+
|
381 |
+
safe_print('\t\tCurrent Category:',
|
382 |
+
incorrect_segment['category'])
|
383 |
+
safe_print('\t\tPredicted Category:',
|
384 |
+
incorrect_segment['predicted'])
|
385 |
+
safe_print('\t\tProbabilities:')
|
386 |
for item in incorrect_segment['scores']:
|
387 |
+
safe_print(
|
388 |
f"\t\t\t{item['label']}: {item['score']}")
|
389 |
|
390 |
+
safe_print()
|
391 |
|
392 |
except KeyboardInterrupt:
|
393 |
pass
|