Spaces:
Running
Running
Joshua Lochner
commited on
Commit
·
787a8df
1
Parent(s):
643d00a
Use new classifier for evaluation
Browse files- src/evaluate.py +65 -32
- src/model.py +5 -2
src/evaluate.py
CHANGED
|
@@ -38,24 +38,15 @@ def attach_predictions_to_sponsor_segments(predictions, sponsor_segments):
|
|
| 38 |
prediction['best_overlap'] = 0
|
| 39 |
prediction['best_sponsorship'] = None
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
sponsor_segment['best_overlap'] = 0
|
| 44 |
-
sponsor_segment['best_prediction'] = None
|
| 45 |
-
|
| 46 |
-
for prediction in predictions:
|
| 47 |
-
|
| 48 |
j = jaccard(prediction['start'], prediction['end'],
|
| 49 |
sponsor_segment['start'], sponsor_segment['end'])
|
| 50 |
-
if sponsor_segment['best_overlap'] < j:
|
| 51 |
-
sponsor_segment['best_overlap'] = j
|
| 52 |
-
sponsor_segment['best_prediction'] = prediction
|
| 53 |
-
|
| 54 |
if prediction['best_overlap'] < j:
|
| 55 |
prediction['best_overlap'] = j
|
| 56 |
prediction['best_sponsorship'] = sponsor_segment
|
| 57 |
|
| 58 |
-
return sponsor_segments
|
| 59 |
|
| 60 |
|
| 61 |
def calculate_metrics(labelled_words, predictions):
|
|
@@ -212,19 +203,55 @@ def main():
|
|
| 212 |
'f-score': total_fscore/len(out_metrics)
|
| 213 |
})
|
| 214 |
|
| 215 |
-
|
| 216 |
predictions, sponsor_segments)
|
| 217 |
|
| 218 |
# Identify possible issues:
|
| 219 |
missed_segments = [
|
| 220 |
prediction for prediction in predictions if prediction['best_sponsorship'] is None]
|
| 221 |
-
incorrect_segments = [
|
| 222 |
-
seg for seg in labelled_predicted_segments if seg['best_prediction'] is None]
|
| 223 |
|
| 224 |
-
#
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
|
| 229 |
else:
|
| 230 |
# logger.warning(f'No labels found for {video_id}')
|
|
@@ -233,13 +260,15 @@ def main():
|
|
| 233 |
incorrect_segments = []
|
| 234 |
|
| 235 |
if missed_segments or incorrect_segments:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
if evaluation_args.output_as_json:
|
| 237 |
to_print = {'video_id': video_id}
|
| 238 |
|
| 239 |
-
for z in missed_segments + incorrect_segments:
|
| 240 |
-
z['text'] = ' '.join(x['text']
|
| 241 |
-
for x in z.pop('words', []))
|
| 242 |
-
|
| 243 |
if missed_segments:
|
| 244 |
to_print['missed'] = missed_segments
|
| 245 |
|
|
@@ -257,8 +286,7 @@ def main():
|
|
| 257 |
for i, missed_segment in enumerate(missed_segments, start=1):
|
| 258 |
print(f'\t#{i}:', seconds_to_time(
|
| 259 |
missed_segment['start']), '-->', seconds_to_time(missed_segment['end']))
|
| 260 |
-
print('\t\tText: "', ' '
|
| 261 |
-
[w['text'] for w in missed_segment['words']]), '"', sep='')
|
| 262 |
print('\t\tCategory:',
|
| 263 |
missed_segment.get('category'))
|
| 264 |
if 'probability' in missed_segment:
|
|
@@ -275,24 +303,29 @@ def main():
|
|
| 275 |
print(
|
| 276 |
f'\tSubmit: https://www.youtube.com/watch?v={video_id}#segments={json_data}')
|
| 277 |
|
| 278 |
-
#
|
| 279 |
if incorrect_segments:
|
| 280 |
print(' - Incorrect segments:')
|
| 281 |
for i, incorrect_segment in enumerate(incorrect_segments, start=1):
|
| 282 |
print(f'\t#{i}:', seconds_to_time(
|
| 283 |
incorrect_segment['start']), '-->', seconds_to_time(incorrect_segment['end']))
|
| 284 |
|
| 285 |
-
|
| 286 |
-
words, incorrect_segment['start'], incorrect_segment['end'])
|
| 287 |
-
print('\t\tText: "', ' '.join(
|
| 288 |
-
[w['text'] for w in seg_words]), '"', sep='')
|
| 289 |
print('\t\tUUID:', incorrect_segment['uuid'])
|
| 290 |
-
print('\t\tCategory:',
|
| 291 |
-
incorrect_segment['category'])
|
| 292 |
print('\t\tVotes:', incorrect_segment['votes'])
|
| 293 |
print('\t\tViews:', incorrect_segment['views'])
|
| 294 |
print('\t\tLocked:',
|
| 295 |
incorrect_segment['locked'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
print()
|
| 297 |
|
| 298 |
except KeyboardInterrupt:
|
|
|
|
| 38 |
prediction['best_overlap'] = 0
|
| 39 |
prediction['best_sponsorship'] = None
|
| 40 |
|
| 41 |
+
# Assign predictions to actual (labelled) sponsored segments
|
| 42 |
+
for sponsor_segment in sponsor_segments:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
j = jaccard(prediction['start'], prediction['end'],
|
| 44 |
sponsor_segment['start'], sponsor_segment['end'])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
if prediction['best_overlap'] < j:
|
| 46 |
prediction['best_overlap'] = j
|
| 47 |
prediction['best_sponsorship'] = sponsor_segment
|
| 48 |
|
| 49 |
+
# return sponsor_segments
|
| 50 |
|
| 51 |
|
| 52 |
def calculate_metrics(labelled_words, predictions):
|
|
|
|
| 203 |
'f-score': total_fscore/len(out_metrics)
|
| 204 |
})
|
| 205 |
|
| 206 |
+
attach_predictions_to_sponsor_segments(
|
| 207 |
predictions, sponsor_segments)
|
| 208 |
|
| 209 |
# Identify possible issues:
|
| 210 |
missed_segments = [
|
| 211 |
prediction for prediction in predictions if prediction['best_sponsorship'] is None]
|
|
|
|
|
|
|
| 212 |
|
| 213 |
+
# Now, check for incorrect segments using the classifier
|
| 214 |
+
incorrect_segments = []
|
| 215 |
+
|
| 216 |
+
segments_to_check = []
|
| 217 |
+
texts = [] # Texts to send through tokenizer
|
| 218 |
+
for sponsor_segment in sponsor_segments:
|
| 219 |
+
segment_words = extract_segment(
|
| 220 |
+
words, sponsor_segment['start'], sponsor_segment['end'])
|
| 221 |
+
sponsor_segment['text'] = ' '.join(x['cleaned'] for x in segment_words)
|
| 222 |
+
|
| 223 |
+
duration = sponsor_segment['end'] - \
|
| 224 |
+
sponsor_segment['start']
|
| 225 |
+
wps = len(segment_words) / \
|
| 226 |
+
duration if duration > 0 else 0
|
| 227 |
+
if wps < 1.5:
|
| 228 |
+
continue
|
| 229 |
+
|
| 230 |
+
# Do not worry about those that are locked or have enough votes
|
| 231 |
+
# or segment['votes'] > 5:
|
| 232 |
+
if sponsor_segment['locked']:
|
| 233 |
+
continue
|
| 234 |
+
|
| 235 |
+
texts.append(sponsor_segment['text'])
|
| 236 |
+
segments_to_check.append(sponsor_segment)
|
| 237 |
+
|
| 238 |
+
if segments_to_check: # Segments to check
|
| 239 |
+
|
| 240 |
+
segments_scores = classifier(texts)
|
| 241 |
+
|
| 242 |
+
for segment, scores in zip(segments_to_check, segments_scores):
|
| 243 |
+
prediction = max(scores, key=lambda x: x['score'])
|
| 244 |
+
predicted_category = prediction['label'].lower()
|
| 245 |
+
|
| 246 |
+
if predicted_category == segment['category']:
|
| 247 |
+
continue # Ignore correct segments
|
| 248 |
+
|
| 249 |
+
segment.update({
|
| 250 |
+
'predicted': predicted_category,
|
| 251 |
+
'scores': scores
|
| 252 |
+
})
|
| 253 |
+
|
| 254 |
+
incorrect_segments.append(segment)
|
| 255 |
|
| 256 |
else:
|
| 257 |
# logger.warning(f'No labels found for {video_id}')
|
|
|
|
| 260 |
incorrect_segments = []
|
| 261 |
|
| 262 |
if missed_segments or incorrect_segments:
|
| 263 |
+
for z in missed_segments:
|
| 264 |
+
# Attach original text to missed segments
|
| 265 |
+
# (Already added to incorrect segments)
|
| 266 |
+
z['text'] = ' '.join(x['text']
|
| 267 |
+
for x in z.pop('words', []))
|
| 268 |
+
|
| 269 |
if evaluation_args.output_as_json:
|
| 270 |
to_print = {'video_id': video_id}
|
| 271 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
if missed_segments:
|
| 273 |
to_print['missed'] = missed_segments
|
| 274 |
|
|
|
|
| 286 |
for i, missed_segment in enumerate(missed_segments, start=1):
|
| 287 |
print(f'\t#{i}:', seconds_to_time(
|
| 288 |
missed_segment['start']), '-->', seconds_to_time(missed_segment['end']))
|
| 289 |
+
print('\t\tText: "', missed_segment['text'], '"', sep='')
|
|
|
|
| 290 |
print('\t\tCategory:',
|
| 291 |
missed_segment.get('category'))
|
| 292 |
if 'probability' in missed_segment:
|
|
|
|
| 303 |
print(
|
| 304 |
f'\tSubmit: https://www.youtube.com/watch?v={video_id}#segments={json_data}')
|
| 305 |
|
| 306 |
+
# Incorrect segments (in database, but incorrectly classified)
|
| 307 |
if incorrect_segments:
|
| 308 |
print(' - Incorrect segments:')
|
| 309 |
for i, incorrect_segment in enumerate(incorrect_segments, start=1):
|
| 310 |
print(f'\t#{i}:', seconds_to_time(
|
| 311 |
incorrect_segment['start']), '-->', seconds_to_time(incorrect_segment['end']))
|
| 312 |
|
| 313 |
+
print('\t\tText: "', incorrect_segment['text'], '"', sep='')
|
|
|
|
|
|
|
|
|
|
| 314 |
print('\t\tUUID:', incorrect_segment['uuid'])
|
|
|
|
|
|
|
| 315 |
print('\t\tVotes:', incorrect_segment['votes'])
|
| 316 |
print('\t\tViews:', incorrect_segment['views'])
|
| 317 |
print('\t\tLocked:',
|
| 318 |
incorrect_segment['locked'])
|
| 319 |
+
|
| 320 |
+
print('\t\tCurrent Category:',
|
| 321 |
+
incorrect_segment['category'])
|
| 322 |
+
print('\t\tPredicted Category:',
|
| 323 |
+
incorrect_segment['predicted'])
|
| 324 |
+
print('\t\tProbabilities:')
|
| 325 |
+
for item in incorrect_segment['scores']:
|
| 326 |
+
print(
|
| 327 |
+
f"\t\t\t{item['label']}: {item['score']}")
|
| 328 |
+
|
| 329 |
print()
|
| 330 |
|
| 331 |
except KeyboardInterrupt:
|
src/model.py
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoConfig, AutoModelForSequenceClassification, TrainingArguments
|
| 2 |
from shared import CustomTokens, GeneralArguments
|
| 3 |
-
from functools import lru_cache
|
| 4 |
from dataclasses import dataclass, field
|
| 5 |
from typing import Optional, Union
|
| 6 |
import torch
|
|
@@ -72,6 +71,7 @@ class ModelArguments:
|
|
| 72 |
"""
|
| 73 |
|
| 74 |
model_name_or_path: str = field(
|
|
|
|
| 75 |
metadata={
|
| 76 |
'help': 'Path to pretrained model or model identifier from huggingface.co/models'
|
| 77 |
}
|
|
@@ -104,7 +104,7 @@ class ModelArguments:
|
|
| 104 |
)
|
| 105 |
|
| 106 |
import itertools
|
| 107 |
-
from errors import InferenceException
|
| 108 |
|
| 109 |
@dataclass
|
| 110 |
class InferenceArguments(ModelArguments):
|
|
@@ -191,6 +191,9 @@ def get_model_tokenizer_classifier(inference_args: InferenceArguments, general_a
|
|
| 191 |
|
| 192 |
|
| 193 |
def get_model_tokenizer(model_args: ModelArguments, general_args: Union[GeneralArguments, TrainingArguments] = None, config_args=None, model_type='seq2seq'):
|
|
|
|
|
|
|
|
|
|
| 194 |
if config_args is None:
|
| 195 |
config_args = {}
|
| 196 |
|
|
|
|
| 1 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoConfig, AutoModelForSequenceClassification, TrainingArguments
|
| 2 |
from shared import CustomTokens, GeneralArguments
|
|
|
|
| 3 |
from dataclasses import dataclass, field
|
| 4 |
from typing import Optional, Union
|
| 5 |
import torch
|
|
|
|
| 71 |
"""
|
| 72 |
|
| 73 |
model_name_or_path: str = field(
|
| 74 |
+
default=None,
|
| 75 |
metadata={
|
| 76 |
'help': 'Path to pretrained model or model identifier from huggingface.co/models'
|
| 77 |
}
|
|
|
|
| 104 |
)
|
| 105 |
|
| 106 |
import itertools
|
| 107 |
+
from errors import InferenceException, ModelLoadError
|
| 108 |
|
| 109 |
@dataclass
|
| 110 |
class InferenceArguments(ModelArguments):
|
|
|
|
| 191 |
|
| 192 |
|
| 193 |
def get_model_tokenizer(model_args: ModelArguments, general_args: Union[GeneralArguments, TrainingArguments] = None, config_args=None, model_type='seq2seq'):
|
| 194 |
+
if model_args.model_name_or_path is None:
|
| 195 |
+
raise ModelLoadError('Must specify --model_name_or_path')
|
| 196 |
+
|
| 197 |
if config_args is None:
|
| 198 |
config_args = {}
|
| 199 |
|