Spaces:
Running
Running
""" Finetuning the library models for sequence classification.""" | |
import logging | |
import os | |
import random | |
import sys | |
from dataclasses import dataclass, field | |
from typing import Optional | |
import datasets | |
import numpy as np | |
from datasets import load_metric | |
import transformers | |
from transformers import ( | |
DataCollatorWithPadding, | |
EvalPrediction, | |
HfArgumentParser, | |
Trainer, | |
default_data_collator, | |
set_seed, | |
) | |
from transformers.utils import check_min_version | |
from transformers.utils.versions import require_version | |
from shared import CATEGORIES, load_datasets, CustomTrainingArguments, train_from_checkpoint, get_last_checkpoint | |
from preprocess import PreprocessingDatasetArguments | |
from model import get_model_tokenizer, ModelArguments | |
# Will error if the minimal version of Transformers is not installed. Remove at your own risks. | |
check_min_version("4.17.0") | |
require_version("datasets>=1.8.0", "To fix: pip install -r requirements.txt") | |
os.environ["WANDB_DISABLED"] = "true" | |
logger = logging.getLogger(__name__) | |
class DataArguments: | |
""" | |
Arguments pertaining to what data we are going to input our model for training and eval. | |
Using `HfArgumentParser` we can turn this class | |
into argparse arguments to be able to specify them on | |
the command line. | |
""" | |
max_seq_length: int = field( | |
default=512, | |
metadata={ | |
"help": "The maximum total input sequence length after tokenization. Sequences longer " | |
"than this will be truncated, sequences shorter will be padded." | |
}, | |
) | |
overwrite_cache: bool = field( | |
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} | |
) | |
pad_to_max_length: bool = field( | |
default=True, | |
metadata={ | |
"help": "Whether to pad all samples to `max_seq_length`. " | |
"If False, will pad the samples dynamically when batching to the maximum length in the batch." | |
}, | |
) | |
max_train_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": "For debugging purposes or quicker training, truncate the number of training examples to this " | |
"value if set." | |
}, | |
) | |
max_eval_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this " | |
"value if set." | |
}, | |
) | |
max_predict_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": "For debugging purposes or quicker training, truncate the number of prediction examples to this " | |
"value if set." | |
}, | |
) | |
dataset_cache_dir: Optional[str] = PreprocessingDatasetArguments.__dataclass_fields__[ | |
'dataset_cache_dir'] | |
data_dir: Optional[str] = PreprocessingDatasetArguments.__dataclass_fields__[ | |
'data_dir'] | |
train_file: Optional[str] = PreprocessingDatasetArguments.__dataclass_fields__[ | |
'c_train_file'] | |
validation_file: Optional[str] = PreprocessingDatasetArguments.__dataclass_fields__[ | |
'c_validation_file'] | |
test_file: Optional[str] = PreprocessingDatasetArguments.__dataclass_fields__[ | |
'c_test_file'] | |
def __post_init__(self): | |
if self.train_file is None or self.validation_file is None: | |
raise ValueError( | |
"Need either a GLUE task, a training/validation file or a dataset name.") | |
else: | |
train_extension = self.train_file.split(".")[-1] | |
assert train_extension in [ | |
"csv", "json"], "`train_file` should be a csv or a json file." | |
validation_extension = self.validation_file.split(".")[-1] | |
assert ( | |
validation_extension == train_extension | |
), "`validation_file` should have the same extension (csv or json) as `train_file`." | |
def main(): | |
# See all possible arguments in src/transformers/training_args.py | |
# or by passing the --help flag to this script. | |
# We now keep distinct sets of args, for a cleaner separation of concerns. | |
parser = HfArgumentParser( | |
(ModelArguments, DataArguments, CustomTrainingArguments)) | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
# Setup logging | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
handlers=[logging.StreamHandler(sys.stdout)], | |
) | |
log_level = training_args.get_process_log_level() | |
logger.setLevel(log_level) | |
datasets.utils.logging.set_verbosity(log_level) | |
transformers.utils.logging.set_verbosity(log_level) | |
transformers.utils.logging.enable_default_handler() | |
transformers.utils.logging.enable_explicit_format() | |
# Log on each process the small summary: | |
logger.warning( | |
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" | |
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" | |
) | |
logger.info(f"Training/evaluation parameters {training_args}") | |
# Detecting last checkpoint. | |
last_checkpoint = get_last_checkpoint(training_args) | |
# Set seed before initializing model. | |
set_seed(training_args.seed) | |
# Loading a dataset from your local files. | |
# CSV/JSON training and evaluation files are needed. | |
raw_datasets = load_datasets(data_args) | |
# See more about loading any type of standard or custom dataset at | |
# https://huggingface.co/docs/datasets/loading_datasets.html. | |
config_args = { | |
'num_labels': len(CATEGORIES), | |
'id2label': {k: str(v).upper() for k, v in enumerate(CATEGORIES)}, | |
'label2id': {str(v).upper(): k for k, v in enumerate(CATEGORIES)} | |
} | |
model, tokenizer = get_model_tokenizer(model_args, training_args, config_args=config_args, model_type='classifier') | |
# Padding strategy | |
if data_args.pad_to_max_length: | |
padding = "max_length" | |
else: | |
# We will pad later, dynamically at batch creation, to the max sequence length in each batch | |
padding = False | |
if data_args.max_seq_length > tokenizer.model_max_length: | |
logger.warning( | |
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" | |
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." | |
) | |
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) | |
def preprocess_function(examples): | |
# Tokenize the texts | |
result = tokenizer( | |
examples['text'], padding=padding, max_length=max_seq_length, truncation=True) | |
result['label'] = examples['label'] | |
return result | |
with training_args.main_process_first(desc="dataset map pre-processing"): | |
raw_datasets = raw_datasets.map( | |
preprocess_function, | |
batched=True, | |
load_from_cache_file=not data_args.overwrite_cache, | |
desc="Running tokenizer on dataset", | |
) | |
if training_args.do_train: | |
if "train" not in raw_datasets: | |
raise ValueError("--do_train requires a train dataset") | |
train_dataset = raw_datasets["train"] | |
if data_args.max_train_samples is not None: | |
train_dataset = train_dataset.select( | |
range(data_args.max_train_samples)) | |
if training_args.do_eval: | |
if "validation" not in raw_datasets: | |
raise ValueError("--do_eval requires a validation dataset") | |
eval_dataset = raw_datasets["validation"] | |
if data_args.max_eval_samples is not None: | |
eval_dataset = eval_dataset.select( | |
range(data_args.max_eval_samples)) | |
if training_args.do_predict or data_args.test_file is not None: | |
if "test" not in raw_datasets: | |
raise ValueError("--do_predict requires a test dataset") | |
predict_dataset = raw_datasets["test"] | |
if data_args.max_predict_samples is not None: | |
predict_dataset = predict_dataset.select( | |
range(data_args.max_predict_samples)) | |
# Log a few random samples from the training set: | |
if training_args.do_train: | |
for index in random.sample(range(len(train_dataset)), 3): | |
logger.info( | |
f"Sample {index} of the training set: {train_dataset[index]}.") | |
# Get the metric function | |
metric = load_metric("accuracy") | |
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a | |
# predictions and label_ids field) and has to return a dictionary string to float. | |
def compute_metrics(p: EvalPrediction): | |
preds = p.predictions[0] if isinstance( | |
p.predictions, tuple) else p.predictions | |
preds = np.argmax(preds, axis=1) | |
if data_args.task_name is not None: | |
result = metric.compute(predictions=preds, references=p.label_ids) | |
if len(result) > 1: | |
result["combined_score"] = np.mean( | |
list(result.values())).item() | |
return result | |
else: | |
return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()} | |
# Data collator will default to DataCollatorWithPadding when the tokenizer is passed to Trainer, so we change it if | |
# we already did the padding. | |
if data_args.pad_to_max_length: | |
data_collator = default_data_collator | |
elif training_args.fp16: | |
data_collator = DataCollatorWithPadding( | |
tokenizer, pad_to_multiple_of=8) | |
else: | |
data_collator = None | |
# Initialize our Trainer | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=train_dataset, | |
eval_dataset=eval_dataset, | |
compute_metrics=compute_metrics, | |
tokenizer=tokenizer, | |
data_collator=data_collator, | |
) | |
# Training | |
train_result = train_from_checkpoint( | |
trainer, last_checkpoint, training_args) | |
metrics = train_result.metrics | |
max_train_samples = ( | |
data_args.max_train_samples if data_args.max_train_samples is not None else len( | |
train_dataset) | |
) | |
metrics["train_samples"] = min(max_train_samples, len(train_dataset)) | |
trainer.save_model() # Saves the tokenizer too for easy upload | |
trainer.log_metrics("train", metrics) | |
trainer.save_metrics("train", metrics) | |
trainer.save_state() | |
kwargs = {"finetuned_from": model_args.model_name_or_path, | |
"tasks": "text-classification"} | |
if training_args.push_to_hub: | |
trainer.push_to_hub(**kwargs) | |
else: | |
trainer.create_model_card(**kwargs) | |
if __name__ == "__main__": | |
main() | |