sponsorblock-ml / src /predict.py
Joshua Lochner
Upgrade classifier to transformer-based model
36f7534
raw
history blame
9.39 kB
from transformers import HfArgumentParser
from dataclasses import dataclass, field
import logging
from shared import CustomTokens, extract_sponsor_matches, GeneralArguments, seconds_to_time
from segment import (
generate_segments,
extract_segment,
MIN_SAFETY_TOKENS,
SAFETY_TOKENS_PERCENTAGE,
word_start,
word_end,
SegmentationArguments
)
import preprocess
from errors import TranscriptError
from model import get_model_tokenizer_classifier, InferenceArguments
logging.basicConfig()
logger = logging.getLogger(__name__)
@dataclass
class PredictArguments(InferenceArguments):
video_id: str = field(
default=None,
metadata={
'help': 'Video to predict segments for'}
)
def __post_init__(self):
if self.video_id is not None:
self.video_ids.append(self.video_id)
super().__post_init__()
MATCH_WINDOW = 25 # Increase for accuracy, but takes longer: O(n^3)
MERGE_TIME_WITHIN = 8 # Merge predictions if they are within x seconds
# Any prediction whose start time is <= this will be set to start at 0
START_TIME_ZERO_THRESHOLD = 0.08
def filter_and_add_probabilities(predictions, classifier, min_probability):
"""Use classifier to filter predictions"""
if not predictions:
return predictions
# We update the predicted category from the extractive transformer
# if the classifier is confident enough it is another category
texts = [
preprocess.clean_text(' '.join([x['text'] for x in pred['words']]))
for pred in predictions
]
classifications = classifier(texts)
filtered_predictions = []
for prediction, probabilities in zip(predictions, classifications):
predicted_probabilities = {
p['label'].lower(): p['score'] for p in probabilities}
# Get best category + probability
classifier_category = max(
predicted_probabilities, key=predicted_probabilities.get)
classifier_probability = predicted_probabilities[classifier_category]
if classifier_category == 'none' and classifier_probability > min_probability:
continue # Ignore
if (prediction['category'] not in predicted_probabilities) \
or (classifier_category != 'none' and classifier_probability > 0.5): # TODO make param
# Unknown category or we are confident enough to overrule,
# so change category to what was predicted by classifier
prediction['category'] = classifier_category
prediction['probability'] = predicted_probabilities[prediction['category']]
# TODO add probabilities, but remove None and normalise rest
prediction['probabilities'] = predicted_probabilities
# if prediction['probability'] < classifier_args.min_probability:
# continue
filtered_predictions.append(prediction)
return filtered_predictions
def predict(video_id, model, tokenizer, segmentation_args, words=None, classifier=None, min_probability=None):
# Allow words to be passed in so that we don't have to get the words if we already have them
if words is None:
words = preprocess.get_words(video_id)
if not words:
raise TranscriptError('Unable to retrieve transcript')
segments = generate_segments(
words,
tokenizer,
segmentation_args
)
predictions = segments_to_predictions(segments, model, tokenizer)
# Add words back to time_ranges
for prediction in predictions:
# Stores words in the range
prediction['words'] = extract_segment(
words, prediction['start'], prediction['end'])
if classifier is not None:
predictions = filter_and_add_probabilities(
predictions, classifier, min_probability)
return predictions
def greedy_match(list, sublist):
# Return index and length of longest matching sublist
best_i = -1
best_j = -1
best_k = 0
for i in range(len(list)): # Start position in main list
for j in range(len(sublist)): # Start position in sublist
for k in range(len(sublist)-j, 0, -1): # Width of sublist window
if k > best_k and list[i:i+k] == sublist[j:j+k]:
best_i, best_j, best_k = i, j, k
break # Since window size decreases
return best_i, best_j, best_k
def predict_sponsor_text(text, model, tokenizer):
"""Given a body of text, predict the words which are part of the sponsor"""
model_device = next(model.parameters()).device
input_ids = tokenizer(
f'{CustomTokens.EXTRACT_SEGMENTS_PREFIX.value} {text}', return_tensors='pt', truncation=True).input_ids.to(model_device)
max_out_len = round(min(
max(
len(input_ids[0])/SAFETY_TOKENS_PERCENTAGE,
len(input_ids[0]) + MIN_SAFETY_TOKENS
),
model.model_dim))
outputs = model.generate(input_ids, max_length=max_out_len)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
def predict_sponsor_matches(text, model, tokenizer):
sponsorship_text = predict_sponsor_text(text, model, tokenizer)
return extract_sponsor_matches(sponsorship_text)
def segments_to_predictions(segments, model, tokenizer):
predicted_time_ranges = []
# TODO pass to model simultaneously, not in for loop
# use 2d array for input ids
for segment in segments:
cleaned_batch = [preprocess.clean_text(
word['text']) for word in segment]
batch_text = ' '.join(cleaned_batch)
matches = predict_sponsor_matches(batch_text, model, tokenizer)
for match in matches:
matched_text = match['text'].split()
# TODO skip if too short
i1, j1, k1 = greedy_match(
cleaned_batch, matched_text[:MATCH_WINDOW])
i2, j2, k2 = greedy_match(
cleaned_batch, matched_text[-MATCH_WINDOW:])
extracted_words = segment[i1:i2+k2]
if not extracted_words:
continue
predicted_time_ranges.append({
'start': word_start(extracted_words[0]),
'end': word_end(extracted_words[-1]),
'category': match['category']
})
# Necessary to sort matches by start time
predicted_time_ranges.sort(key=word_start)
# Merge overlapping predictions and sponsorships that are close together
# Caused by model having max input size
prev_prediction = None
final_predicted_time_ranges = []
for range in predicted_time_ranges:
start_time = range['start'] if range['start'] > START_TIME_ZERO_THRESHOLD else 0
end_time = range['end']
if prev_prediction is not None and \
(start_time <= prev_prediction['end'] <= end_time or # Merge overlapping segments
(range['category'] == prev_prediction['category'] # Merge disconnected segments if same category and within threshold
and start_time - prev_prediction['end'] <= MERGE_TIME_WITHIN)):
# Extend last prediction range
final_predicted_time_ranges[-1]['end'] = end_time
else: # No overlap, is a new prediction
final_predicted_time_ranges.append({
'start': start_time,
'end': end_time,
'category': range['category']
})
prev_prediction = range
return final_predicted_time_ranges
def main():
# Test on unseen data
logger.setLevel(logging.DEBUG)
hf_parser = HfArgumentParser((
PredictArguments,
SegmentationArguments,
GeneralArguments
))
predict_args, segmentation_args, general_args = hf_parser.parse_args_into_dataclasses()
if not predict_args.video_ids:
logger.error(
'No video IDs supplied. Use `--video_id`, `--video_ids`, or `--channel_id`.')
return
model, tokenizer, classifier = get_model_tokenizer_classifier(
predict_args, general_args)
for video_id in predict_args.video_ids:
try:
predictions = predict(video_id, model, tokenizer, segmentation_args,
classifier=classifier,
min_probability=predict_args.min_probability)
except TranscriptError:
logger.warning(f'No transcript available for {video_id}')
continue
video_url = f'https://www.youtube.com/watch?v={video_id}'
if not predictions:
logger.info(f'No predictions found for {video_url}')
continue
# TODO use predict_args.output_as_json
print(len(predictions), 'predictions found for', video_url)
for index, prediction in enumerate(predictions, start=1):
print(f'Prediction #{index}:')
print('Text: "',
' '.join([w['text'] for w in prediction['words']]), '"', sep='')
print('Time:', seconds_to_time(
prediction['start']), '\u2192', seconds_to_time(prediction['end']))
print('Category:', prediction.get('category'))
if 'probability' in prediction:
print('Probability:', prediction['probability'])
print()
print()
if __name__ == '__main__':
main()