sponsorblock-ml / src /evaluate.py
Joshua Lochner
Only consider spoken words when calculating metrics
9f15397
raw
history blame
12.4 kB
from model import get_model_tokenizer
from utils import jaccard
from transformers import HfArgumentParser
from preprocess import DatasetArguments, get_words
from shared import GeneralArguments
from predict import ClassifierArguments, predict, InferenceArguments
from segment import extract_segment, word_start, word_end, SegmentationArguments, add_labels_to_words
import pandas as pd
from dataclasses import dataclass, field
from typing import Optional
from tqdm import tqdm
import json
import os
import random
from shared import seconds_to_time
from urllib.parse import quote
import logging
logging.basicConfig()
logger = logging.getLogger(__name__)
@dataclass
class EvaluationArguments(InferenceArguments):
"""Arguments pertaining to how evaluation will occur."""
output_file: Optional[str] = field(
default='metrics.csv',
metadata={
'help': 'Save metrics to output file'
}
)
def attach_predictions_to_sponsor_segments(predictions, sponsor_segments):
"""Attach sponsor segments to closest prediction"""
for prediction in predictions:
prediction['best_overlap'] = 0
prediction['best_sponsorship'] = None
# Assign predictions to actual (labelled) sponsored segments
for sponsor_segment in sponsor_segments:
sponsor_segment['best_overlap'] = 0
sponsor_segment['best_prediction'] = None
for prediction in predictions:
j = jaccard(prediction['start'], prediction['end'],
sponsor_segment['start'], sponsor_segment['end'])
if sponsor_segment['best_overlap'] < j:
sponsor_segment['best_overlap'] = j
sponsor_segment['best_prediction'] = prediction
if prediction['best_overlap'] < j:
prediction['best_overlap'] = j
prediction['best_sponsorship'] = sponsor_segment
return sponsor_segments
def calculate_metrics(labelled_words, predictions):
metrics = {
'true_positive': 0, # Is sponsor, predicted sponsor
# Is sponsor, predicted not sponsor (i.e., missed it - bad)
'false_negative': 0,
# Is not sponsor, predicted sponsor (classified incorectly, not that bad since we do manual checking afterwards)
'false_positive': 0,
'true_negative': 0, # Is not sponsor, predicted not sponsor
}
metrics['video_duration'] = word_end(
labelled_words[-1])-word_start(labelled_words[0])
for index, word in enumerate(labelled_words):
if index >= len(labelled_words) - 1:
continue
duration = word_end(word) - word_start(word)
predicted_sponsor = False
for p in predictions:
# Is in some prediction
if p['start'] <= word['start'] <= p['end']:
predicted_sponsor = True
break
if predicted_sponsor:
# total_positive_time += duration
if word.get('category') is not None: # Is actual sponsor
metrics['true_positive'] += duration
else:
metrics['false_positive'] += duration
else:
# total_negative_time += duration
if word.get('category') is not None: # Is actual sponsor
metrics['false_negative'] += duration
else:
metrics['true_negative'] += duration
# NOTE In cases where we encounter division by 0, we say that the value is 1
# https://stats.stackexchange.com/a/1775
# (Precision) TP+FP=0: means that all instances were predicted as negative
# (Recall) TP+FN=0: means that there were no positive cases in the input data
# The fraction of predictions our model got right
# Can simplify, but use full formula
z = metrics['true_positive'] + metrics['true_negative'] + \
metrics['false_positive'] + metrics['false_negative']
metrics['accuracy'] = (
(metrics['true_positive'] + metrics['true_negative']) / z) if z > 0 else 1
# What proportion of positive identifications was actually correct?
z = metrics['true_positive'] + metrics['false_positive']
metrics['precision'] = (metrics['true_positive'] / z) if z > 0 else 1
# What proportion of actual positives was identified correctly?
z = metrics['true_positive'] + metrics['false_negative']
metrics['recall'] = (metrics['true_positive'] / z) if z > 0 else 1
# https://deepai.org/machine-learning-glossary-and-terms/f-score
s = metrics['precision'] + metrics['recall']
metrics['f-score'] = (2 * (metrics['precision'] *
metrics['recall']) / s) if s > 0 else 0
return metrics
def main():
logger.setLevel(logging.DEBUG)
hf_parser = HfArgumentParser((
EvaluationArguments,
DatasetArguments,
SegmentationArguments,
ClassifierArguments,
GeneralArguments
))
evaluation_args, dataset_args, segmentation_args, classifier_args, general_args = hf_parser.parse_args_into_dataclasses()
# Load labelled data:
final_path = os.path.join(
dataset_args.data_dir, dataset_args.processed_file)
if not os.path.exists(final_path):
logger.error('ERROR: Processed database not found.\n'
f'Run `python src/preprocess.py --update_database --do_create` to generate "{final_path}".')
return
model, tokenizer = get_model_tokenizer(
evaluation_args.model_path, evaluation_args.cache_dir, general_args.no_cuda)
with open(final_path) as fp:
final_data = json.load(fp)
if evaluation_args.video_ids: # Use specified
video_ids = evaluation_args.video_ids
else: # Use items found in preprocessed database
video_ids = list(final_data.keys())
random.shuffle(video_ids)
if evaluation_args.start_index is not None:
video_ids = video_ids[evaluation_args.start_index:]
if evaluation_args.max_videos is not None:
video_ids = video_ids[:evaluation_args.max_videos]
# TODO option to choose categories
total_accuracy = 0
total_precision = 0
total_recall = 0
total_fscore = 0
out_metrics = []
try:
with tqdm(video_ids) as progress:
for video_index, video_id in enumerate(progress):
progress.set_description(f'Processing {video_id}')
words = get_words(video_id)
if not words:
continue
# Make predictions
predictions = predict(video_id, model, tokenizer,
segmentation_args, words, classifier_args)
# Get labels
sponsor_segments = final_data.get(video_id)
if sponsor_segments:
labelled_words = add_labels_to_words(
words, sponsor_segments)
met = calculate_metrics(labelled_words, predictions)
met['video_id'] = video_id
out_metrics.append(met)
total_accuracy += met['accuracy']
total_precision += met['precision']
total_recall += met['recall']
total_fscore += met['f-score']
progress.set_postfix({
'accuracy': total_accuracy/len(out_metrics),
'precision': total_precision/len(out_metrics),
'recall': total_recall/len(out_metrics),
'f-score': total_fscore/len(out_metrics)
})
labelled_predicted_segments = attach_predictions_to_sponsor_segments(
predictions, sponsor_segments)
# Identify possible issues:
missed_segments = [
prediction for prediction in predictions if prediction['best_sponsorship'] is None]
incorrect_segments = [
seg for seg in labelled_predicted_segments if seg['best_prediction'] is None]
# Add words to incorrect segments
for seg in incorrect_segments:
seg['words'] = extract_segment(
words, seg['start'], seg['end'])
else:
# logger.warning(f'No labels found for {video_id}')
# Not in database (all segments missed)
missed_segments = predictions
incorrect_segments = []
if missed_segments or incorrect_segments:
if evaluation_args.output_as_json:
to_print = {'video_id': video_id}
for z in missed_segments + incorrect_segments:
z['text'] = ' '.join(x['text']
for x in z.pop('words', []))
if missed_segments:
to_print['missed'] = missed_segments
if incorrect_segments:
to_print['incorrect'] = incorrect_segments
print(json.dumps(to_print))
else:
print(
f'Issues identified for {video_id} (#{video_index})')
# Potentially missed segments (model predicted, but not in database)
if missed_segments:
print(' - Missed segments:')
segments_to_submit = []
for i, missed_segment in enumerate(missed_segments, start=1):
print(f'\t#{i}:', seconds_to_time(
missed_segment['start']), '-->', seconds_to_time(missed_segment['end']))
print('\t\tText: "', ' '.join(
[w['text'] for w in missed_segment['words']]), '"', sep='')
print('\t\tCategory:',
missed_segment.get('category'))
if 'probability' in missed_segment:
print('\t\tProbability:',
missed_segment['probability'])
segments_to_submit.append({
'segment': [missed_segment['start'], missed_segment['end']],
'category': missed_segment['category'].lower(),
'actionType': 'skip'
})
json_data = quote(json.dumps(segments_to_submit))
print(
f'\tSubmit: https://www.youtube.com/watch?v={video_id}#segments={json_data}')
# Potentially incorrect segments (model didn't predict, but in database)
if incorrect_segments:
print(' - Incorrect segments:')
for i, incorrect_segment in enumerate(incorrect_segments, start=1):
print(f'\t#{i}:', seconds_to_time(
incorrect_segment['start']), '-->', seconds_to_time(incorrect_segment['end']))
seg_words = extract_segment(
words, incorrect_segment['start'], incorrect_segment['end'])
print('\t\tText: "', ' '.join(
[w['text'] for w in seg_words]), '"', sep='')
print('\t\tUUID:', incorrect_segment['uuid'])
print('\t\tCategory:',
incorrect_segment['category'])
print('\t\tVotes:', incorrect_segment['votes'])
print('\t\tViews:', incorrect_segment['views'])
print('\t\tLocked:',
incorrect_segment['locked'])
print()
except KeyboardInterrupt:
pass
df = pd.DataFrame(out_metrics)
df.to_csv(evaluation_args.output_file)
logger.info(df.mean())
if __name__ == '__main__':
main()