File size: 8,718 Bytes
36f7534
 
320a2ba
5fbdd3c
 
 
 
 
 
36f7534
5fbdd3c
 
 
 
 
320a2ba
5fbdd3c
 
 
 
 
 
 
 
 
 
c4f250e
5fbdd3c
 
 
 
 
 
 
 
 
 
086ca93
5fbdd3c
 
 
 
 
 
 
 
 
 
31d605f
5fbdd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36f7534
5fbdd3c
36f7534
5fbdd3c
36f7534
5fbdd3c
 
 
36f7534
5fbdd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36f7534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fbdd3c
36f7534
5fbdd3c
36f7534
 
 
 
 
 
 
 
5fbdd3c
36f7534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fbdd3c
36f7534
 
 
 
5fbdd3c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
from preprocess import PreprocessingDatasetArguments
from shared import CustomTokens, load_datasets, CustomTrainingArguments, get_last_checkpoint, train_from_checkpoint
from model import ModelArguments
import transformers
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from datasets import utils as d_utils
from transformers import (
    DataCollatorForSeq2Seq,
    HfArgumentParser,
    Seq2SeqTrainer,
)

from transformers.utils import check_min_version
from transformers.utils.versions import require_version

# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.13.0.dev0')
require_version('datasets>=1.8.0',
                'To fix: pip install -r requirements.txt')

os.environ['WANDB_DISABLED'] = 'true'

logging.basicConfig()
logger = logging.getLogger(__name__)

# Setup logging
logging.basicConfig(
    format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
    datefmt='%m/%d/%Y %H:%M:%S',
    handlers=[logging.StreamHandler(sys.stdout)],
)



@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={'help': 'The number of processes to use for the preprocessing.'},
    )

    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            'help': 'For debugging purposes or quicker training, truncate the number of training examples to this value if set.'
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
            'help': 'For debugging purposes or quicker training, truncate the number of evaluation examples to this value if set.'
        },
    )
    max_predict_samples: Optional[int] = field(
        default=None,
        metadata={
            'help': 'For debugging purposes or quicker training, truncate the number of prediction examples to this value if set.'
        },
    )


def main():

    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    hf_parser = HfArgumentParser((
        ModelArguments,
        PreprocessingDatasetArguments,
        DataTrainingArguments,
        CustomTrainingArguments
    ))
    model_args, dataset_args, data_training_args, training_args = hf_parser.parse_args_into_dataclasses()

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    d_utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Set seed before initializing model.
    # set_seed(training_args.seed)

    # Log on each process the small summary:
    logger.warning(
        f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'
        + f'distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}'
    )
    logger.info(f'Training/evaluation parameters {training_args}')

    # FP16 https://github.com/huggingface/transformers/issues/9295

    # Works:
    # https://huggingface.co/docs/transformers/model_doc/t5v1.1
    # google/t5-v1_1-small
    # google/t5-v1_1-base
    # google/t5-v1_1-large
    # google/t5-v1_1-xl
    # google/t5-v1_1-xxl

    # https://huggingface.co/docs/transformers/model_doc/t5
    # t5-small
    # t5-base
    # t5-large
    # t5-3b
    # t5-11b

    # allenai/led-base-16384 - https://github.com/huggingface/transformers/issues/9810

    # Further work:
    # Multilingual- https://huggingface.co/docs/transformers/model_doc/mt5

    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    raw_datasets = load_datasets(dataset_args)
    # , cache_dir=model_args.cache_dir

    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.


    # Detecting last checkpoint.
    last_checkpoint = get_last_checkpoint(training_args)

    from model import get_model_tokenizer
    model, tokenizer = get_model_tokenizer(model_args, training_args)

    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
    column_names = raw_datasets['train'].column_names

    prefix = CustomTokens.EXTRACT_SEGMENTS_PREFIX.value

    PAD_TOKEN_REPLACE_ID = -100

    # https://github.com/huggingface/transformers/issues/5204
    def preprocess_function(examples):
        inputs = examples['text']
        targets = examples['extracted']
        inputs = [prefix + inp for inp in inputs]
        model_inputs = tokenizer(inputs, truncation=True)

        # Setup the tokenizer for targets
        with tokenizer.as_target_tokenizer():
            labels = tokenizer(targets, truncation=True)

        # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100
        # when we want to ignore padding in the loss.

        model_inputs['labels'] = [
            [(l if l != tokenizer.pad_token_id else PAD_TOKEN_REPLACE_ID)
                for l in label]
            for label in labels['input_ids']
        ]

        return model_inputs

    def prepare_dataset(dataset, desc):
        return dataset.map(
            preprocess_function,
            batched=True,
            num_proc=data_training_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not dataset_args.overwrite_cache,
            desc=desc,  # tokenizing train dataset
        )
    # train_dataset # TODO shuffle?

    # if training_args.do_train:
    if 'train' not in raw_datasets:  # TODO do checks above?
        raise ValueError('Train dataset missing')
    train_dataset = raw_datasets['train']
    if data_training_args.max_train_samples is not None:
        train_dataset = train_dataset.select(
            range(data_training_args.max_train_samples))
    with training_args.main_process_first(desc='train dataset map pre-processing'):
        train_dataset = prepare_dataset(
            train_dataset, desc='Running tokenizer on train dataset')

    if 'validation' not in raw_datasets:
        raise ValueError('Validation dataset missing')
    eval_dataset = raw_datasets['validation']
    if data_training_args.max_eval_samples is not None:
        eval_dataset = eval_dataset.select(
            range(data_training_args.max_eval_samples))
    with training_args.main_process_first(desc='validation dataset map pre-processing'):
        eval_dataset = prepare_dataset(
            eval_dataset, desc='Running tokenizer on validation dataset')

    if 'test' not in raw_datasets:
        raise ValueError('Test dataset missing')
    predict_dataset = raw_datasets['test']
    if data_training_args.max_predict_samples is not None:
        predict_dataset = predict_dataset.select(
            range(data_training_args.max_predict_samples))
    with training_args.main_process_first(desc='prediction dataset map pre-processing'):
        predict_dataset = prepare_dataset(
            predict_dataset, desc='Running tokenizer on prediction dataset')

    # Data collator
    data_collator = DataCollatorForSeq2Seq(
        tokenizer,
        model=model,
        label_pad_token_id=PAD_TOKEN_REPLACE_ID,
        pad_to_multiple_of=8 if training_args.fp16 else None,
    )

    # Done processing datasets

    # Initialize our Trainer
    trainer = Seq2SeqTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        tokenizer=tokenizer,
        data_collator=data_collator,
    )

    # Training
    train_result = train_from_checkpoint(trainer, last_checkpoint, training_args)

    metrics = train_result.metrics
    max_train_samples = data_training_args.max_train_samples or len(
        train_dataset)
    metrics['train_samples'] = min(max_train_samples, len(train_dataset))

    trainer.log_metrics('train', metrics)
    trainer.save_metrics('train', metrics)
    trainer.save_state()

    kwargs = {'finetuned_from': model_args.model_name_or_path,
                'tasks': 'summarization'}

    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)


if __name__ == '__main__':
    main()