import gradio as gr from statistics import mean from torch.utils.data import Dataset from collections import OrderedDict import xml.etree.ElementTree as ET import openai # For GPT-3 API ... import os import multiprocessing import json import numpy as np import random import torch import torchtext import re import random import time import datetime import pandas as pd import sys openai.api_key = os.getenv("api_key") def greet(question): input = question + '\n\n' + "|step|subquestion|process|result|" response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are a helpful assistant that generate table to solve reasoning problem."}, {"role": "user", "content": input}, ] ) response = response["choices"][0]["message"]["content"] return "|step|subquestion|process|result|\n" + response iface = gr.Interface( fn=greet, inputs="text", outputs="text", title="Tab-CoT: Zero-Shot Tabular Chain-of-Thought", examples="Tommy is fundraising for his charity by selling brownies for $3 a slice and cheesecakes for $4 a slice. If Tommy sells 43 brownies and 23 slices of cheesecake, how much money does Tommy raise?") iface.launch()