# Copyright 2024 Xi Zhang # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn from transformers import AutoImageProcessor, AutoModel, AutoConfig class CLIPVisionTower(nn.Module): def __init__(self, vision_tower, args, delay_load=False): super().__init__() self.is_loaded = False self.vision_tower_name = vision_tower self.select_layer = args.mm_vision_select_layer self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch') if not delay_load: self.load_model() elif getattr(args, 'unfreeze_mm_vision_tower', False): self.load_model() else: self.cfg_only = AutoConfig.from_pretrained(self.vision_tower_name) def load_model(self): if self.is_loaded: print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name)) return self.image_processor = AutoImageProcessor.from_pretrained(self.vision_tower_name) self.vision_tower = AutoModel.from_pretrained(self.vision_tower_name) self.vision_tower.requires_grad_(False) self.is_loaded = True def get_features(self, images): outputs = self.vision_tower(images, output_hidden_states=True) hidden_states = outputs.hidden_states if self.select_layer == "all": if self.select_feature == "patch": all_layers_features = [hidden_state[:, 1:, :].contiguous() for hidden_state in hidden_states[1:]] elif self.select_feature == "cls_patch": all_layers_features = [hidden_state.contiguous() for hidden_state in hidden_states[1:]] else: raise ValueError(f"Unexpected select feature: {self.select_feature}") return torch.stack(all_layers_features) else: selected_layer_features = hidden_states[int(self.select_layer)] if self.select_feature == "patch": selected_layer_features = selected_layer_features[:, 1:] elif self.select_feature == "cls_patch": selected_layer_features = selected_layer_features else: raise ValueError(f"Unexpected select feature: {self.select_feature}") return selected_layer_features @torch.no_grad() def forward(self, images): if images.shape[0] != 2: raise ValueError( f"Expected images.shape[0] == 2, but got {images.shape[0]}. " "Ensure the input includes both current and previous images." ) cur_images = images[0] prev_images = images[1] cur_features = self.get_features(cur_images) prev_features = self.get_features(prev_images) cur_features = cur_features.permute(1, 0, 2, 3) prev_features = prev_features.permute(1, 0, 2, 3) # Stack current and previous images along a new dimension images_features = torch.stack([cur_features, prev_features]) return images_features @property def dummy_feature(self): return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) @property def dtype(self): return self.vision_tower.dtype @property def device(self): return self.vision_tower.device @property def config(self): if self.is_loaded: return self.vision_tower.config else: return self.cfg_only @property def hidden_size(self): return self.config.hidden_size @property def num_patches(self): return (self.config.image_size // self.config.patch_size) ** 2 @property def num_layers(self): return self.config.num_hidden_layers