Spaces:
Running
Running
Update libra/eval/run_libra.py
Browse files- libra/eval/run_libra.py +7 -6
libra/eval/run_libra.py
CHANGED
@@ -28,6 +28,7 @@ def load_model(model_path, model_base=None):
|
|
28 |
disable_torch_init()
|
29 |
model_name = get_model_name_from_path(model_path)
|
30 |
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, model_base, model_name)
|
|
|
31 |
return tokenizer, model, image_processor, context_len
|
32 |
|
33 |
def load_images(image_file):
|
@@ -92,7 +93,7 @@ def load_images(image_file):
|
|
92 |
|
93 |
return image
|
94 |
|
95 |
-
def get_image_tensors(image_path, image_processor, model, device='
|
96 |
# Load and preprocess the images
|
97 |
if isinstance(image_path, str):
|
98 |
image = []
|
@@ -144,7 +145,7 @@ def libra_eval(
|
|
144 |
):
|
145 |
# Model
|
146 |
disable_torch_init()
|
147 |
-
|
148 |
if libra_model is not None:
|
149 |
tokenizer, model, image_processor, context_len = libra_model
|
150 |
model_name = model.config._name_or_path
|
@@ -171,18 +172,18 @@ def libra_eval(
|
|
171 |
conv.append_message(conv.roles[1], None)
|
172 |
prompt = conv.get_prompt()
|
173 |
|
174 |
-
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).
|
175 |
-
attention_mask = torch.ones(input_ids.shape, dtype=torch.long)
|
176 |
pad_token_id = tokenizer.pad_token_id
|
177 |
|
178 |
-
image_tensor = get_image_tensors(image_file, image_processor, model)
|
179 |
|
180 |
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
181 |
keywords = [stop_str]
|
182 |
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
183 |
|
184 |
with torch.inference_mode():
|
185 |
-
|
186 |
if num_beams > 1:
|
187 |
output_ids = model.generate(
|
188 |
input_ids=input_ids,
|
|
|
28 |
disable_torch_init()
|
29 |
model_name = get_model_name_from_path(model_path)
|
30 |
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, model_base, model_name)
|
31 |
+
model.to("cpu")
|
32 |
return tokenizer, model, image_processor, context_len
|
33 |
|
34 |
def load_images(image_file):
|
|
|
93 |
|
94 |
return image
|
95 |
|
96 |
+
def get_image_tensors(image_path, image_processor, model, device='cpu'):
|
97 |
# Load and preprocess the images
|
98 |
if isinstance(image_path, str):
|
99 |
image = []
|
|
|
145 |
):
|
146 |
# Model
|
147 |
disable_torch_init()
|
148 |
+
device = "cpu"
|
149 |
if libra_model is not None:
|
150 |
tokenizer, model, image_processor, context_len = libra_model
|
151 |
model_name = model.config._name_or_path
|
|
|
172 |
conv.append_message(conv.roles[1], None)
|
173 |
prompt = conv.get_prompt()
|
174 |
|
175 |
+
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(device)
|
176 |
+
attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=device)
|
177 |
pad_token_id = tokenizer.pad_token_id
|
178 |
|
179 |
+
image_tensor = get_image_tensors(image_file, image_processor, model, , device=device)
|
180 |
|
181 |
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
182 |
keywords = [stop_str]
|
183 |
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
184 |
|
185 |
with torch.inference_mode():
|
186 |
+
|
187 |
if num_beams > 1:
|
188 |
output_ids = model.generate(
|
189 |
input_ids=input_ids,
|