|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import copy |
|
import numpy as np |
|
from dataclasses import dataclass, field |
|
import json |
|
import logging |
|
import pathlib |
|
from typing import Dict, Optional, Sequence, List, Union |
|
|
|
import random |
|
import torch |
|
import shutil |
|
import evaluate |
|
|
|
import transformers |
|
import tokenizers |
|
from transformers import EvalPrediction, TrainerCallback |
|
|
|
from libra.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN |
|
from torch.utils.data import Dataset |
|
from libra.train.libra_trainer import LibraTrainer |
|
|
|
from libra import conversation as conversation_lib |
|
from libra.model import * |
|
from libra.mm_utils import tokenizer_image_token |
|
from libra.eval import temporal_f1_score |
|
|
|
from PIL import Image |
|
import pydicom |
|
from pydicom.pixel_data_handlers.util import apply_voi_lut |
|
|
|
local_rank = None |
|
|
|
|
|
def rank0_print(*args): |
|
if local_rank == 0: |
|
print(*args) |
|
|
|
from packaging import version |
|
IS_TOKENIZER_GREATER_THAN_0_14 = version.parse(tokenizers.__version__) >= version.parse('0.14') |
|
|
|
@dataclass |
|
class ModelArguments: |
|
model_name_or_path: Optional[str] = field(default="libra") |
|
version: Optional[str] = field(default="libra_v1") |
|
freeze_backbone: bool = field(default=False) |
|
tune_mm_mlp_adapter: bool = field(default=False) |
|
vision_tower: Optional[str] = field(default=None) |
|
mm_vision_select_layer: Optional[Union[int, str]] = field( |
|
default=-1, |
|
metadata={"help": "Select specific vision layer (e.g., -1, -2) or 'all' for all layers."} |
|
) |
|
pretrain_mm_mlp_adapter: Optional[str] = field(default=None) |
|
mm_projector_type: Optional[str] = field(default='linear') |
|
mm_use_im_start_end: bool = field(default=False) |
|
mm_use_im_patch_token: bool = field(default=True) |
|
mm_vision_select_feature: Optional[str] = field( |
|
default="patch", |
|
metadata={"help": "Select feature type: 'patch' or 'cls_patch'."} |
|
) |
|
compute_metrics: bool = field( |
|
default=False, |
|
metadata={"help": "Optional callable for computing metrics during evaluation during training."} |
|
) |
|
|
|
@dataclass |
|
class DataArguments: |
|
data_path: str = field(default=None, |
|
metadata={"help": "Path to the training data."}) |
|
lazy_preprocess: bool = False |
|
is_multimodal: bool = False |
|
image_folder: Optional[str] = field(default=None) |
|
image_aspect_ratio: str = 'square' |
|
validation_data_path: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Path to the validation data."} |
|
) |
|
|
|
|
|
@dataclass |
|
class TrainingArguments(transformers.TrainingArguments): |
|
cache_dir: Optional[str] = field(default=None) |
|
optim: str = field(default="adamw_torch") |
|
remove_unused_columns: bool = field(default=False) |
|
freeze_mm_mlp_adapter: bool = field(default=False) |
|
mpt_attn_impl: Optional[str] = field(default="triton") |
|
model_max_length: int = field( |
|
default=512, |
|
metadata={ |
|
"help": |
|
"Maximum sequence length. Sequences will be right padded (and possibly truncated)." |
|
}, |
|
) |
|
double_quant: bool = field( |
|
default=True, |
|
metadata={"help": "Compress the quantization statistics through double quantization."} |
|
) |
|
quant_type: str = field( |
|
default="nf4", |
|
metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."} |
|
) |
|
bits: int = field( |
|
default=16, |
|
metadata={"help": "How many bits to use."} |
|
) |
|
lora_enable: bool = False |
|
lora_r: int = 64 |
|
lora_alpha: int = 16 |
|
lora_dropout: float = 0.05 |
|
lora_weight_path: str = "" |
|
lora_bias: str = "none" |
|
mm_projector_lr: Optional[float] = None |
|
group_by_modality_length: bool = field(default=False) |
|
|
|
|
|
def maybe_zero_3(param, ignore_status=False, name=None): |
|
from deepspeed import zero |
|
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus |
|
if hasattr(param, "ds_id"): |
|
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE: |
|
if not ignore_status: |
|
logging.warning(f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}") |
|
with zero.GatheredParameters([param]): |
|
param = param.data.detach().cpu().clone() |
|
else: |
|
param = param.detach().cpu().clone() |
|
return param |
|
|
|
|
|
|
|
def get_peft_state_maybe_zero_3(named_params, bias): |
|
if bias == "none": |
|
to_return = {k: t for k, t in named_params if "lora_" in k} |
|
elif bias == "all": |
|
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k} |
|
elif bias == "lora_only": |
|
to_return = {} |
|
maybe_lora_bias = {} |
|
lora_bias_names = set() |
|
for k, t in named_params: |
|
if "lora_" in k: |
|
to_return[k] = t |
|
bias_name = k.split("lora_")[0] + "bias" |
|
lora_bias_names.add(bias_name) |
|
elif "bias" in k: |
|
maybe_lora_bias[k] = t |
|
for k, t in maybe_lora_bias: |
|
if bias_name in lora_bias_names: |
|
to_return[bias_name] = t |
|
else: |
|
raise NotImplementedError |
|
to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()} |
|
return to_return |
|
|
|
|
|
def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True): |
|
to_return = {k: t for k, t in named_params if "lora_" not in k} |
|
if require_grad_only: |
|
to_return = {k: t for k, t in to_return.items() if t.requires_grad} |
|
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} |
|
return to_return |
|
|
|
|
|
def get_non_vision_tower_state_maybe_zero_3(named_params): |
|
|
|
to_return = {k: t for k, t in named_params if "vision_tower" not in k} |
|
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} |
|
|
|
return to_return |
|
|
|
|
|
def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match): |
|
to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)} |
|
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} |
|
return to_return |
|
|
|
|
|
def find_all_linear_names(model): |
|
cls = torch.nn.Linear |
|
lora_module_names = set() |
|
multimodal_keywords = ['mm_projector', 'vision_tower', 'vision_resampler'] |
|
for name, module in model.named_modules(): |
|
if any(mm_keyword in name for mm_keyword in multimodal_keywords): |
|
continue |
|
if isinstance(module, cls): |
|
names = name.split('.') |
|
lora_module_names.add(names[0] if len(names) == 1 else names[-1]) |
|
|
|
if 'lm_head' in lora_module_names: |
|
lora_module_names.remove('lm_head') |
|
return list(lora_module_names) |
|
|
|
|
|
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, |
|
output_dir: str): |
|
"""Collects the state dict and dump to disk.""" |
|
|
|
if getattr(trainer.args, "tune_mm_mlp_adapter", False): |
|
|
|
keys_to_match = ['mm_projector'] |
|
if getattr(trainer.args, "use_im_start_end", False): |
|
keys_to_match.extend(['embed_tokens', 'embed_in']) |
|
|
|
weight_to_save = get_mm_adapter_state_maybe_zero_3(trainer.model.named_parameters(), keys_to_match) |
|
trainer.model.config.save_pretrained(output_dir) |
|
|
|
current_folder = output_dir.split('/')[-1] |
|
parent_folder = os.path.dirname(output_dir) |
|
if trainer.args.local_rank == 0 or trainer.args.local_rank == -1: |
|
if current_folder.startswith('checkpoint-'): |
|
mm_projector_folder = os.path.join(parent_folder, "mm_projector") |
|
os.makedirs(mm_projector_folder, exist_ok=True) |
|
torch.save(weight_to_save, os.path.join(mm_projector_folder, f'{current_folder}.bin')) |
|
else: |
|
torch.save(weight_to_save, os.path.join(output_dir, f'mm_projector.bin')) |
|
return |
|
|
|
if trainer.deepspeed: |
|
torch.cuda.synchronize() |
|
trainer.save_model(output_dir) |
|
return |
|
|
|
state_dict = trainer.model.state_dict() |
|
if trainer.args.should_save: |
|
cpu_state_dict = { |
|
key: value.cpu() |
|
for key, value in state_dict.items() |
|
} |
|
del state_dict |
|
trainer._save(output_dir, state_dict=cpu_state_dict) |
|
|
|
|
|
def smart_tokenizer_and_embedding_resize( |
|
special_tokens_dict: Dict, |
|
tokenizer: transformers.PreTrainedTokenizer, |
|
model: transformers.PreTrainedModel, |
|
): |
|
"""Resize tokenizer and embedding. You can add some new tokens <video> etc |
|
|
|
Note: This is the unoptimized version that may make your embedding size not be divisible by 64. |
|
""" |
|
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict) |
|
model.resize_token_embeddings(len(tokenizer)) |
|
|
|
if num_new_tokens > 0: |
|
input_embeddings = model.get_input_embeddings().weight.data |
|
output_embeddings = model.get_output_embeddings().weight.data |
|
|
|
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( |
|
dim=0, keepdim=True) |
|
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( |
|
dim=0, keepdim=True) |
|
|
|
input_embeddings[-num_new_tokens:] = input_embeddings_avg |
|
output_embeddings[-num_new_tokens:] = output_embeddings_avg |
|
|
|
|
|
def _tokenize_fn(strings: Sequence[str], |
|
tokenizer: transformers.PreTrainedTokenizer) -> Dict: |
|
""" |
|
Tokenizes a list of input strings and returns tokenized results along with sequence lengths. |
|
""" |
|
tokenized_list = [ |
|
tokenizer( |
|
text, |
|
return_tensors="pt", |
|
padding="longest", |
|
max_length=tokenizer.model_max_length, |
|
truncation=True, |
|
) for text in strings |
|
] |
|
input_ids = labels = [ |
|
tokenized.input_ids[0] for tokenized in tokenized_list |
|
] |
|
input_ids_lens = labels_lens = [ |
|
tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() |
|
for tokenized in tokenized_list |
|
] |
|
return dict( |
|
input_ids=input_ids, |
|
labels=labels, |
|
input_ids_lens=input_ids_lens, |
|
labels_lens=labels_lens, |
|
) |
|
|
|
|
|
def _mask_targets(target, tokenized_lens, speakers): |
|
|
|
cur_idx = tokenized_lens[0] |
|
tokenized_lens = tokenized_lens[1:] |
|
target[:cur_idx] = IGNORE_INDEX |
|
for tokenized_len, speaker in zip(tokenized_lens, speakers): |
|
if speaker == "human": |
|
target[cur_idx+2:cur_idx + tokenized_len] = IGNORE_INDEX |
|
cur_idx += tokenized_len |
|
|
|
|
|
def _add_speaker_and_signal(header, source, get_conversation=True): |
|
"""Add speaker and start/end signal on each round.""" |
|
BEGIN_SIGNAL = "### " |
|
END_SIGNAL = "\n" |
|
conversation = header |
|
for sentence in source: |
|
from_str = sentence["from"] |
|
if from_str.lower() == "human": |
|
from_str = conversation_lib.default_conversation.roles[0] |
|
elif from_str.lower() == "gpt": |
|
from_str = conversation_lib.default_conversation.roles[1] |
|
else: |
|
from_str = 'unknown' |
|
sentence["value"] = (BEGIN_SIGNAL + from_str + ": " + |
|
sentence["value"] + END_SIGNAL) |
|
if get_conversation: |
|
conversation += sentence["value"] |
|
conversation += BEGIN_SIGNAL |
|
return conversation |
|
|
|
|
|
def preprocess_multimodal( |
|
sources: Sequence[str], |
|
data_args: DataArguments |
|
) -> Dict: |
|
is_multimodal = data_args.is_multimodal |
|
if not is_multimodal: |
|
return sources |
|
|
|
for source in sources: |
|
for sentence in source: |
|
if DEFAULT_IMAGE_TOKEN in sentence['value']: |
|
sentence['value'] = sentence['value'].replace(DEFAULT_IMAGE_TOKEN, '').strip() |
|
sentence['value'] = DEFAULT_IMAGE_TOKEN + '\n' + sentence['value'] |
|
sentence['value'] = sentence['value'].strip() |
|
if "mmtag" in conversation_lib.default_conversation.version: |
|
sentence['value'] = sentence['value'].replace(DEFAULT_IMAGE_TOKEN, '<Image>' + DEFAULT_IMAGE_TOKEN + '</Image>') |
|
replace_token = DEFAULT_IMAGE_TOKEN |
|
if data_args.mm_use_im_start_end: |
|
replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN |
|
sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, replace_token) |
|
return sources |
|
|
|
|
|
def preprocess_llama_2( |
|
sources, |
|
tokenizer: transformers.PreTrainedTokenizer, |
|
has_image: bool = False |
|
) -> Dict: |
|
conv = conversation_lib.default_conversation.copy() |
|
roles = {"human": conv.roles[0], "gpt": conv.roles[1]} |
|
|
|
|
|
conversations = [] |
|
for i, source in enumerate(sources): |
|
if roles[source[0]["from"]] != conv.roles[0]: |
|
|
|
source = source[1:] |
|
|
|
conv.messages = [] |
|
for j, sentence in enumerate(source): |
|
role = roles[sentence["from"]] |
|
assert role == conv.roles[j % 2], f"{i}" |
|
conv.append_message(role, sentence["value"]) |
|
conversations.append(conv.get_prompt()) |
|
|
|
|
|
|
|
if has_image: |
|
input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0) |
|
else: |
|
input_ids = tokenizer( |
|
conversations, |
|
return_tensors="pt", |
|
padding="longest", |
|
max_length=tokenizer.model_max_length, |
|
truncation=True, |
|
).input_ids |
|
|
|
targets = input_ids.clone() |
|
|
|
assert conv.sep_style == conversation_lib.SeparatorStyle.LLAMA_2 |
|
|
|
|
|
sep = "[/INST] " |
|
for conversation, target in zip(conversations, targets): |
|
total_len = int(target.ne(tokenizer.pad_token_id).sum()) |
|
|
|
rounds = conversation.split(conv.sep2) |
|
cur_len = 1 |
|
target[:cur_len] = IGNORE_INDEX |
|
for i, rou in enumerate(rounds): |
|
if rou == "": |
|
break |
|
|
|
parts = rou.split(sep) |
|
if len(parts) != 2: |
|
break |
|
parts[0] += sep |
|
|
|
if has_image: |
|
round_len = len(tokenizer_image_token(rou, tokenizer)) |
|
instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2 |
|
else: |
|
round_len = len(tokenizer(rou).input_ids) |
|
instruction_len = len(tokenizer(parts[0]).input_ids) - 2 |
|
|
|
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX |
|
|
|
cur_len += round_len |
|
target[cur_len:] = IGNORE_INDEX |
|
|
|
if cur_len < tokenizer.model_max_length: |
|
if cur_len != total_len: |
|
target[:] = IGNORE_INDEX |
|
print( |
|
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." |
|
f" (ignored)" |
|
) |
|
|
|
return dict( |
|
input_ids=input_ids, |
|
labels=targets, |
|
) |
|
|
|
|
|
def preprocess_llama_3( |
|
sources, |
|
tokenizer: transformers.PreTrainedTokenizer, |
|
has_image: bool = False |
|
) -> Dict: |
|
|
|
special_token = "<|finetune_right_pad_id|>" |
|
|
|
if tokenizer.pad_token_id is None: |
|
|
|
pad_token_id = tokenizer.convert_tokens_to_ids(special_token) |
|
if pad_token_id is None: |
|
raise ValueError(f"Cannot find ID for {special_token}. Please check the tokenizer.") |
|
|
|
tokenizer.pad_token_id = pad_token_id |
|
|
|
conv = conversation_lib.default_conversation.copy() |
|
roles = {"human": conv.roles[0], "gpt": conv.roles[1]} |
|
|
|
|
|
conversations = [] |
|
for i, source in enumerate(sources): |
|
if roles[source[0]["from"]] != conv.roles[0]: |
|
|
|
source = source[1:] |
|
|
|
conv.messages = [] |
|
for j, sentence in enumerate(source): |
|
role = roles[sentence["from"]] |
|
assert role == conv.roles[j % 2], f"{i}" |
|
conv.append_message(role, sentence["value"]) |
|
conversations.append(conv.get_prompt()) |
|
|
|
if has_image: |
|
input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0) |
|
else: |
|
input_ids = tokenizer( |
|
conversations, |
|
return_tensors="pt", |
|
padding="longest", |
|
max_length=tokenizer.model_max_length, |
|
truncation=True, |
|
).input_ids |
|
|
|
targets = input_ids.clone() |
|
|
|
assert conv.sep_style == conversation_lib.SeparatorStyle.LLAMA_3 |
|
|
|
sep_round = "<|eot_id|>\n<|start_header_id|>user<|end_header_id|>" |
|
sep_user = "<|eot_id|>\n<|start_header_id|>assistant<|end_header_id|>\n\n" |
|
for conversation, target in zip(conversations, targets): |
|
total_len = int(target.ne(tokenizer.pad_token_id).sum()) |
|
rounds = conversation.split(sep_round) |
|
cur_len = 1 |
|
target[:cur_len] = IGNORE_INDEX |
|
for i, rou in enumerate(rounds): |
|
if rou == "": |
|
break |
|
|
|
parts = rou.split(sep_user) |
|
if len(parts) != 2: |
|
break |
|
parts[0] += sep_user |
|
|
|
if has_image: |
|
round_len = len(tokenizer_image_token(rou, tokenizer)) - 1 |
|
instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 1 |
|
else: |
|
round_len = len(tokenizer(rou).input_ids) - 1 |
|
instruction_len = len(tokenizer(parts[0]).input_ids) - 1 |
|
|
|
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX |
|
|
|
cur_len += round_len |
|
target[cur_len:] = IGNORE_INDEX |
|
|
|
if cur_len < tokenizer.model_max_length: |
|
if cur_len != total_len: |
|
target[:] = IGNORE_INDEX |
|
print( |
|
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." |
|
f" (ignored)" |
|
) |
|
|
|
return dict( |
|
input_ids=input_ids, |
|
labels=targets, |
|
) |
|
|
|
def preprocess_libra( |
|
sources, |
|
tokenizer: transformers.PreTrainedTokenizer, |
|
has_image: bool = False |
|
) -> Dict: |
|
conv = conversation_lib.default_conversation.copy() |
|
roles = {"human": conv.roles[0], "gpt": conv.roles[1]} |
|
|
|
|
|
conversations = [] |
|
for i, source in enumerate(sources): |
|
if roles[source[0]["from"]] != conv.roles[0]: |
|
|
|
source = source[1:] |
|
|
|
conv.messages = [] |
|
for j, sentence in enumerate(source): |
|
role = roles[sentence["from"]] |
|
assert role == conv.roles[j % 2], f"{i}" |
|
conv.append_message(role, sentence["value"]) |
|
conversations.append(conv.get_prompt()) |
|
|
|
|
|
if has_image: |
|
input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0) |
|
else: |
|
input_ids = tokenizer( |
|
conversations, |
|
return_tensors="pt", |
|
padding="longest", |
|
max_length=tokenizer.model_max_length, |
|
truncation=True, |
|
).input_ids |
|
|
|
targets = input_ids.clone() |
|
|
|
assert conv.sep_style == conversation_lib.SeparatorStyle.TWO |
|
|
|
|
|
sep = conv.sep + conv.roles[1] + ": " |
|
for conversation, target in zip(conversations, targets): |
|
total_len = int(target.ne(tokenizer.pad_token_id).sum()) |
|
|
|
|
|
rounds = conversation.split(conv.sep2) |
|
cur_len = 1 |
|
target[:cur_len] = IGNORE_INDEX |
|
for i, rou in enumerate(rounds): |
|
if rou == "": |
|
break |
|
|
|
parts = rou.split(sep) |
|
if len(parts) != 2: |
|
break |
|
parts[0] += sep |
|
|
|
if has_image: |
|
round_len = len(tokenizer_image_token(rou, tokenizer)) |
|
instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2 |
|
else: |
|
round_len = len(tokenizer(rou).input_ids) |
|
instruction_len = len(tokenizer(parts[0]).input_ids) - 2 |
|
|
|
if i != 0 and not tokenizer.legacy and IS_TOKENIZER_GREATER_THAN_0_14: |
|
round_len -= 1 |
|
instruction_len -= 1 |
|
|
|
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX |
|
|
|
cur_len += round_len |
|
target[cur_len:] = IGNORE_INDEX |
|
|
|
if cur_len < tokenizer.model_max_length: |
|
if cur_len != total_len: |
|
target[:] = IGNORE_INDEX |
|
print( |
|
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." |
|
f" (ignored)" |
|
) |
|
|
|
return dict( |
|
input_ids=input_ids, |
|
labels=targets, |
|
) |
|
|
|
|
|
def preprocess_mpt( |
|
sources, |
|
tokenizer: transformers.PreTrainedTokenizer, |
|
has_image: bool = False |
|
) -> Dict: |
|
conv = conversation_lib.default_conversation.copy() |
|
roles = {"human": conv.roles[0], "gpt": conv.roles[1]} |
|
|
|
|
|
conversations = [] |
|
for i, source in enumerate(sources): |
|
if roles[source[0]["from"]] != conv.roles[0]: |
|
|
|
source = source[1:] |
|
|
|
conv.messages = [] |
|
for j, sentence in enumerate(source): |
|
role = roles[sentence["from"]] |
|
assert role == conv.roles[j % 2], f"{i}" |
|
conv.append_message(role, sentence["value"]) |
|
conversations.append(conv.get_prompt()) |
|
|
|
|
|
|
|
if has_image: |
|
input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0) |
|
else: |
|
input_ids = tokenizer( |
|
conversations, |
|
return_tensors="pt", |
|
padding="longest", |
|
max_length=tokenizer.model_max_length, |
|
truncation=True, |
|
).input_ids |
|
|
|
targets = input_ids.clone() |
|
assert conv.sep_style == conversation_lib.SeparatorStyle.MPT |
|
|
|
|
|
sep = conv.sep + conv.roles[1] |
|
for conversation, target in zip(conversations, targets): |
|
total_len = int(target.ne(tokenizer.pad_token_id).sum()) |
|
|
|
rounds = conversation.split(conv.sep) |
|
re_rounds = [conv.sep.join(rounds[:3])] |
|
for conv_idx in range(3, len(rounds), 2): |
|
re_rounds.append(conv.sep.join(rounds[conv_idx:conv_idx+2])) |
|
cur_len = 0 |
|
target[:cur_len] = IGNORE_INDEX |
|
for i, rou in enumerate(re_rounds): |
|
if rou == "": |
|
break |
|
|
|
parts = rou.split(sep) |
|
if len(parts) != 2: |
|
break |
|
parts[0] += sep |
|
|
|
if has_image: |
|
round_len = len(tokenizer_image_token(rou, tokenizer)) |
|
instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 1 |
|
else: |
|
round_len = len(tokenizer(rou).input_ids) |
|
instruction_len = len(tokenizer(parts[0]).input_ids) - 1 |
|
|
|
if i != 0 and getattr(tokenizer, 'legacy', False) and IS_TOKENIZER_GREATER_THAN_0_14: |
|
round_len += 1 |
|
instruction_len += 1 |
|
|
|
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX |
|
|
|
cur_len += round_len |
|
target[cur_len:] = IGNORE_INDEX |
|
|
|
if cur_len < tokenizer.model_max_length: |
|
if cur_len != total_len: |
|
target[:] = IGNORE_INDEX |
|
print( |
|
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." |
|
f" (ignored)" |
|
) |
|
|
|
return dict( |
|
input_ids=input_ids, |
|
labels=targets, |
|
) |
|
|
|
|
|
def preprocess_plain( |
|
sources: Sequence[str], |
|
tokenizer: transformers.PreTrainedTokenizer, |
|
) -> Dict: |
|
|
|
conversations = [] |
|
for source in sources: |
|
assert len(source) == 2 |
|
assert DEFAULT_IMAGE_TOKEN in source[0]['value'] |
|
source[0]['value'] = DEFAULT_IMAGE_TOKEN |
|
conversation = source[0]['value'] + source[1]['value'] + conversation_lib.default_conversation.sep |
|
conversations.append(conversation) |
|
|
|
input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations] |
|
targets = copy.deepcopy(input_ids) |
|
for target, source in zip(targets, sources): |
|
tokenized_len = len(tokenizer_image_token(source[0]['value'], tokenizer)) |
|
target[:tokenized_len] = IGNORE_INDEX |
|
|
|
return dict(input_ids=input_ids, labels=targets) |
|
|
|
|
|
def load_images(image_file): |
|
""" |
|
Load an image from a local file, a URL, or a DICOM file. |
|
|
|
Args: |
|
image_file (str): The path or URL of the image file to load. |
|
|
|
Returns: |
|
PIL.Image.Image: The loaded image in RGB format. |
|
|
|
Raises: |
|
ValueError: If the DICOM file does not contain image data. |
|
TypeError: If the input is neither a valid file path nor a URL. |
|
""" |
|
if isinstance(image_file, str): |
|
|
|
if image_file.startswith(('http://', 'https://')): |
|
try: |
|
response = requests.get(image_file) |
|
response.raise_for_status() |
|
image = Image.open(BytesIO(response.content)).convert('RGB') |
|
except Exception as e: |
|
raise ValueError(f"Error loading image from URL: {image_file}\n{e}") |
|
|
|
|
|
elif image_file.lower().endswith('.dcm'): |
|
try: |
|
dicom = pydicom.dcmread(image_file) |
|
if 'PixelData' in dicom: |
|
data = apply_voi_lut(dicom.pixel_array, dicom) |
|
|
|
|
|
if dicom.PhotometricInterpretation == "MONOCHROME1": |
|
data = np.max(data) - data |
|
|
|
|
|
data = data - np.min(data) |
|
data = data / np.max(data) |
|
data = (data * 255).astype(np.uint8) |
|
|
|
|
|
if data.ndim == 2: |
|
data = np.stack([data] * 3, axis=-1) |
|
|
|
image = Image.fromarray(data).convert('RGB') |
|
else: |
|
raise ValueError("DICOM file does not contain image data") |
|
except Exception as e: |
|
raise ValueError(f"Error loading DICOM file: {image_file}\n{e}") |
|
|
|
|
|
else: |
|
try: |
|
image = Image.open(image_file).convert('RGB') |
|
except Exception as e: |
|
raise ValueError(f"Error loading standard image file: {image_file}\n{e}") |
|
|
|
else: |
|
raise TypeError("image_file must be a string representing a file path or URL") |
|
|
|
return image |
|
|
|
|
|
def preprocess( |
|
sources: Sequence[str], |
|
tokenizer: transformers.PreTrainedTokenizer, |
|
has_image: bool = False |
|
) -> Dict: |
|
""" |
|
Given a list of sources, each is a conversation list. This transform: |
|
1. Add signal '### ' at the beginning each sentence, with end signal '\n'; |
|
2. Concatenate conversations together; |
|
3. Tokenize the concatenated conversation; |
|
4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX. |
|
""" |
|
if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.PLAIN: |
|
return preprocess_plain(sources, tokenizer) |
|
if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.LLAMA_2: |
|
return preprocess_llama_2(sources, tokenizer, has_image=has_image) |
|
if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.LLAMA_3: |
|
return preprocess_llama_3(sources, tokenizer, has_image=has_image) |
|
if conversation_lib.default_conversation.version.startswith("v1"): |
|
return preprocess_libra(sources, tokenizer, has_image=has_image) |
|
if conversation_lib.default_conversation.version == "mpt": |
|
return preprocess_mpt(sources, tokenizer) |
|
|
|
conversations = [] |
|
for source in sources: |
|
header = f"{conversation_lib.default_conversation.system}\n\n" |
|
conversation = _add_speaker_and_signal(header, source) |
|
conversations.append(conversation) |
|
|
|
def get_tokenize_len(prompts): |
|
return [len(tokenizer_image_token(prompt, tokenizer)) for prompt in prompts] |
|
|
|
if has_image: |
|
input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations] |
|
else: |
|
conversations_tokenized = _tokenize_fn(conversations, tokenizer) |
|
input_ids = conversations_tokenized["input_ids"] |
|
|
|
targets = copy.deepcopy(input_ids) |
|
for target, source in zip(targets, sources): |
|
if has_image: |
|
tokenized_lens = get_tokenize_len([header] + [s["value"] for s in source]) |
|
else: |
|
tokenized_lens = _tokenize_fn([header] + [s["value"] for s in source], tokenizer)["input_ids_lens"] |
|
speakers = [sentence["from"] for sentence in source] |
|
_mask_targets(target, tokenized_lens, speakers) |
|
|
|
return dict(input_ids=input_ids, labels=targets) |
|
|
|
|
|
def create_compute_metrics(tokenizer, num_patches: int, sep2: str): |
|
""" |
|
Creates a function to compute evaluation metrics (e.g., BLEU, ROUGE-L, Temple-F1) for the model. |
|
based on the given tokenizer and 'num_patches' parameter. |
|
|
|
Args: |
|
tokenizer: The tokenizer used for encoding/decoding text. |
|
num_patches (int): The number of patches to be adjusted in the labels. |
|
sep2 (str): A separator token used to identify a special token ID. |
|
|
|
Returns: |
|
A callable function 'compute_metrics(eval_pred)' that computes evaluation metrics. |
|
""" |
|
|
|
bos_token_id = tokenizer.convert_tokens_to_ids(sep2) |
|
newline_token_id = tokenizer.convert_tokens_to_ids('<0x0A>') |
|
|
|
special_token_ids = [bos_token_id, newline_token_id, 0] |
|
|
|
|
|
bleu_metric = evaluate.load("bleu") |
|
rouge_metric = evaluate.load("rouge") |
|
|
|
def compute_metrics(eval_pred: EvalPrediction) -> dict: |
|
""" |
|
Compute various evaluation metrics including BLEU, ROUGE, F1 for RadGraph and CheXbert, and BERTScore. |
|
|
|
Args: |
|
eval_pred (EvalPrediction): Contains model predictions and true labels. |
|
|
|
Returns: |
|
dict: Dictionary containing evaluation metric scores. |
|
""" |
|
logits, labels = eval_pred.predictions, eval_pred.label_ids |
|
predicted_ids = np.argmax(logits, axis=-1) |
|
|
|
|
|
processed_predicted_ids = [] |
|
|
|
for label, predicted in zip(labels, predicted_ids): |
|
|
|
ignore_count = next( |
|
(i for i, token in enumerate(label) if token != IGNORE_INDEX), |
|
len(label) |
|
) |
|
|
|
|
|
|
|
start_index = ignore_count + num_patches - 2 |
|
|
|
|
|
if start_index >= len(predicted): |
|
processed_predicted_ids.append([]) |
|
continue |
|
|
|
|
|
temp_predicted = predicted[start_index:] |
|
|
|
|
|
matching_indices = [] |
|
for token_id in special_token_ids: |
|
idx = np.where(temp_predicted == token_id)[0] |
|
if idx.size > 0: |
|
matching_indices.append(idx) |
|
|
|
if matching_indices: |
|
|
|
all_indices = np.concatenate(matching_indices) |
|
first_match_index = np.min(all_indices) |
|
|
|
temp_predicted = temp_predicted[:first_match_index] |
|
|
|
|
|
processed_predicted_ids.append(temp_predicted) |
|
|
|
|
|
decoded_preds = tokenizer.batch_decode( |
|
processed_predicted_ids, |
|
skip_special_tokens=True |
|
) |
|
|
|
|
|
filtered_labels = [ |
|
[token for token in label_group if token != IGNORE_INDEX] |
|
for label_group in labels |
|
] |
|
|
|
decoded_labels = tokenizer.batch_decode( |
|
filtered_labels, |
|
skip_special_tokens=True |
|
) |
|
|
|
references = [[lbl] for lbl in decoded_labels] |
|
|
|
|
|
bleu_score = bleu_metric.compute( |
|
predictions=decoded_preds, |
|
references=references, |
|
max_order=4 |
|
)["bleu"] |
|
|
|
|
|
rouge_score = rouge_metric.compute( |
|
predictions=decoded_preds, |
|
references=references |
|
)["rougeL"] |
|
|
|
|
|
tem_f1_score = temporal_f1_score( |
|
predictions=decoded_preds, |
|
references=references |
|
)["f1"] |
|
|
|
|
|
del logits, labels, decoded_preds, decoded_labels, references |
|
torch.cuda.empty_cache() |
|
|
|
|
|
return { |
|
"BLEU4": bleu_score, |
|
"ROUGE-L": rouge_score, |
|
"TEM-F1": tem_f1_score |
|
} |
|
|
|
return compute_metrics |
|
|
|
def check_trainable_parameters(model: torch.nn.Module) -> None: |
|
""" |
|
Print the names, shapes, and data types of all trainable parameters in the model. |
|
|
|
Args: |
|
model (torch.nn.Module): The model to inspect. |
|
""" |
|
total_params = sum( |
|
p.numel() for p in model.parameters() if p.requires_grad |
|
) |
|
|
|
print(f"Total number of trainable parameters: {total_params:,d}\n") |
|
|
|
|
|
print("Overall model structure:") |
|
print(model) |
|
print("\nTrainable parameters:") |
|
|
|
|
|
for name, param in model.named_parameters(): |
|
if param.requires_grad: |
|
param_info = ( |
|
f"Shape: {list(param.shape)}, " |
|
f"Dtype: {param.dtype}" |
|
) |
|
print(f" - {name} -> {param_info}") |
|
|
|
class LazySupervisedDataset(Dataset): |
|
"""Dataset for supervised fine-tuning.""" |
|
|
|
def __init__(self, data_path: str, |
|
tokenizer: transformers.PreTrainedTokenizer, |
|
data_args: DataArguments, |
|
sample_rate=1.0): |
|
super(LazySupervisedDataset, self).__init__() |
|
list_data_dict = json.load(open(data_path, "r")) |
|
|
|
|
|
if 0 < sample_rate < 1.0: |
|
random.seed(27) |
|
sampled_size = int(len(list_data_dict) * sample_rate) |
|
list_data_dict = random.sample(list_data_dict, sampled_size) |
|
|
|
rank0_print("Formatting inputs...Skip in lazy mode") |
|
self.tokenizer = tokenizer |
|
self.list_data_dict = list_data_dict |
|
self.data_args = data_args |
|
|
|
def __len__(self): |
|
return len(self.list_data_dict) |
|
|
|
@property |
|
def lengths(self): |
|
length_list = [] |
|
for sample in self.list_data_dict: |
|
img_tokens = 128 if 'image' in sample else 0 |
|
length_list.append(sum(len(conv['value'].split()) for conv in sample['conversations']) + img_tokens) |
|
return length_list |
|
|
|
@property |
|
def modality_lengths(self): |
|
length_list = [] |
|
for sample in self.list_data_dict: |
|
cur_len = sum(len(conv['value'].split()) for conv in sample['conversations']) |
|
cur_len = cur_len if 'image' in sample else -cur_len |
|
length_list.append(cur_len) |
|
return length_list |
|
|
|
def __getitem__(self, i) -> Dict[str, torch.Tensor]: |
|
sources = self.list_data_dict[i] |
|
if isinstance(i, int): |
|
sources = [sources] |
|
assert len(sources) == 1, "Don't know why it is wrapped to a list" |
|
if 'image' in sources[0]: |
|
image_file = self.list_data_dict[i]['image'] |
|
image_folder = self.data_args.image_folder |
|
processor = self.data_args.image_processor |
|
|
|
if isinstance(image_file, str): |
|
image=[] |
|
image_path = os.path.join(image_folder, image_file) |
|
img = load_images(image_path) |
|
image.append(img) |
|
|
|
image.append(img) |
|
|
|
elif isinstance(image_file, (list, tuple)): |
|
image=[] |
|
image_paths = [os.path.join(image_folder, file_name) for file_name in image_file] |
|
for path in image_paths: |
|
img = load_images(path) |
|
image.append(img) |
|
|
|
if len(image) == 1: |
|
print("Contains only current image. Adding a dummy prior image.") |
|
image.append(image[0]) |
|
|
|
else: |
|
raise TypeError("image_file must be a string or a list/tuple of strings") |
|
|
|
if self.data_args.image_aspect_ratio == 'pad': |
|
def expand2square(pil_img, background_color=(0, 0, 0)): |
|
width, height = pil_img.size |
|
if width == height: |
|
return pil_img |
|
elif width > height: |
|
result = Image.new(pil_img.mode, (width, width), background_color) |
|
result.paste(pil_img, (0, (width - height) // 2)) |
|
return result |
|
else: |
|
result = Image.new(pil_img.mode, (height, height), background_color) |
|
result.paste(pil_img, ((height - width) // 2, 0)) |
|
return result |
|
|
|
processed_images = [] |
|
for img_data in image: |
|
pad_image = expand2square(img_data, (0, 0, 0)) |
|
image_temp = processor.preprocess(pad_image, return_tensors='pt')['pixel_values'][0] |
|
processed_images.append(image_temp) |
|
image = processed_images |
|
|
|
else: |
|
processed_images = [] |
|
for img_data in image: |
|
image_temp = processor.preprocess(img_data, return_tensors='pt')['pixel_values'][0] |
|
processed_images.append(image_temp) |
|
image = processed_images |
|
|
|
sources = preprocess_multimodal( |
|
copy.deepcopy([e["conversations"] for e in sources]), |
|
self.data_args) |
|
else: |
|
sources = copy.deepcopy([e["conversations"] for e in sources]) |
|
|
|
data_dict = preprocess( |
|
sources, |
|
self.tokenizer, |
|
has_image=('image' in self.list_data_dict[i])) |
|
if isinstance(i, int): |
|
data_dict = dict(input_ids=data_dict["input_ids"][0], |
|
labels=data_dict["labels"][0]) |
|
|
|
|
|
if 'image' in self.list_data_dict[i]: |
|
data_dict['image'] = image |
|
elif self.data_args.is_multimodal: |
|
|
|
crop_size = self.data_args.image_processor.crop_size |
|
data_dict['image'] = torch.zeros(3, crop_size['height'], crop_size['width']) |
|
return data_dict |
|
|
|
|
|
@dataclass |
|
class DataCollatorForSupervisedDataset(object): |
|
"""Collate examples for supervised fine-tuning.""" |
|
|
|
tokenizer: transformers.PreTrainedTokenizer |
|
|
|
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]: |
|
input_ids, labels = tuple([instance[key] for instance in instances] |
|
for key in ("input_ids", "labels")) |
|
input_ids = torch.nn.utils.rnn.pad_sequence( |
|
input_ids, |
|
batch_first=True, |
|
padding_value=self.tokenizer.pad_token_id) |
|
labels = torch.nn.utils.rnn.pad_sequence(labels, |
|
batch_first=True, |
|
padding_value=IGNORE_INDEX) |
|
input_ids = input_ids[:, :self.tokenizer.model_max_length] |
|
labels = labels[:, :self.tokenizer.model_max_length] |
|
batch = dict( |
|
input_ids=input_ids, |
|
labels=labels, |
|
attention_mask=input_ids.ne(self.tokenizer.pad_token_id), |
|
) |
|
|
|
if 'image' in instances[0]: |
|
|
|
if not all(len(instance['image']) == 2 for instance in instances): |
|
raise ValueError("Each instance['image'] must contain exactly two type images.") |
|
|
|
cur_images = [instance['image'][0] for instance in instances] |
|
prior_images = [instance['image'][1] for instance in instances] |
|
|
|
|
|
if all(x is not None and x.shape == cur_images[0].shape for x in cur_images) and \ |
|
all(x is not None and x.shape == prior_images[0].shape for x in prior_images): |
|
|
|
batch['images'] = torch.stack([torch.stack(cur_images), torch.stack(prior_images)]) |
|
else: |
|
print("Warning: Image shapes are inconsistent. Using lists for images.") |
|
batch['images'] = [cur_images, prior_images] |
|
|
|
return batch |
|
|
|
|
|
|
|
def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer, |
|
data_args) -> Dict: |
|
"""Make dataset and collator for supervised fine-tuning.""" |
|
train_dataset = LazySupervisedDataset(tokenizer=tokenizer, |
|
data_path=data_args.data_path, |
|
data_args=data_args) |
|
|
|
eval_dataset = LazySupervisedDataset(tokenizer=tokenizer, |
|
data_path=data_args.validation_data_path, |
|
data_args=data_args, |
|
sample_rate=1.0) |
|
|
|
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer) |
|
return dict(train_dataset=train_dataset, |
|
eval_dataset=eval_dataset, |
|
data_collator=data_collator) |
|
|
|
def train(): |
|
global local_rank |
|
|
|
parser = transformers.HfArgumentParser( |
|
(ModelArguments, DataArguments, TrainingArguments)) |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
local_rank = training_args.local_rank |
|
compute_dtype = (torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32)) |
|
|
|
bnb_model_from_pretrained_args = {} |
|
if training_args.bits in [4, 8]: |
|
from transformers import BitsAndBytesConfig |
|
bnb_model_from_pretrained_args.update(dict( |
|
device_map={"": training_args.device}, |
|
load_in_4bit=training_args.bits == 4, |
|
load_in_8bit=training_args.bits == 8, |
|
quantization_config=BitsAndBytesConfig( |
|
load_in_4bit=training_args.bits == 4, |
|
load_in_8bit=training_args.bits == 8, |
|
llm_int8_skip_modules=["mm_projector"], |
|
llm_int8_threshold=6.0, |
|
llm_int8_has_fp16_weight=False, |
|
bnb_4bit_compute_dtype=compute_dtype, |
|
bnb_4bit_use_double_quant=training_args.double_quant, |
|
bnb_4bit_quant_type=training_args.quant_type |
|
) |
|
)) |
|
|
|
if model_args.vision_tower is not None: |
|
model = LibraLlamaForCausalLM.from_pretrained( |
|
model_args.model_name_or_path, |
|
cache_dir=training_args.cache_dir, |
|
torch_dtype=(torch.bfloat16 if training_args.bf16 else None), |
|
**bnb_model_from_pretrained_args |
|
) |
|
else: |
|
model = transformers.LlamaForCausalLM.from_pretrained( |
|
model_args.model_name_or_path, |
|
cache_dir=training_args.cache_dir, |
|
torch_dtype=(torch.bfloat16 if training_args.bf16 else None), |
|
**bnb_model_from_pretrained_args |
|
) |
|
model.config.use_cache = False |
|
|
|
if model_args.freeze_backbone: |
|
model.model.requires_grad_(False) |
|
|
|
if training_args.bits in [4, 8]: |
|
from peft import prepare_model_for_kbit_training |
|
model.config.torch_dtype=(torch.float32 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32)) |
|
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=training_args.gradient_checkpointing) |
|
|
|
if training_args.gradient_checkpointing: |
|
if hasattr(model, "enable_input_require_grads"): |
|
model.enable_input_require_grads() |
|
else: |
|
def make_inputs_require_grad(module, input, output): |
|
output.requires_grad_(True) |
|
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) |
|
|
|
if training_args.lora_enable: |
|
from peft import LoraConfig, get_peft_model |
|
lora_config = LoraConfig( |
|
r=training_args.lora_r, |
|
lora_alpha=training_args.lora_alpha, |
|
target_modules=find_all_linear_names(model), |
|
lora_dropout=training_args.lora_dropout, |
|
bias=training_args.lora_bias, |
|
task_type="CAUSAL_LM", |
|
) |
|
if training_args.bits == 16: |
|
if training_args.bf16: |
|
model.to(torch.bfloat16) |
|
if training_args.fp16: |
|
model.to(torch.float16) |
|
rank0_print("Adding LoRA adapters...") |
|
model = get_peft_model(model, lora_config) |
|
|
|
if 'mpt' in model_args.model_name_or_path: |
|
tokenizer = transformers.AutoTokenizer.from_pretrained( |
|
model_args.model_name_or_path, |
|
cache_dir=training_args.cache_dir, |
|
model_max_length=training_args.model_max_length, |
|
padding_side="right" |
|
) |
|
else: |
|
tokenizer = transformers.AutoTokenizer.from_pretrained( |
|
model_args.model_name_or_path, |
|
cache_dir=training_args.cache_dir, |
|
model_max_length=training_args.model_max_length, |
|
padding_side="right", |
|
use_fast=False, |
|
) |
|
|
|
if model_args.version == "v0": |
|
if tokenizer.pad_token is None: |
|
smart_tokenizer_and_embedding_resize( |
|
special_tokens_dict=dict(pad_token="[PAD]"), |
|
tokenizer=tokenizer, |
|
model=model, |
|
) |
|
|
|
elif model_args.version == "v0.5": |
|
tokenizer.pad_token = tokenizer.unk_token |
|
else: |
|
tokenizer.pad_token = tokenizer.unk_token |
|
if model_args.version in conversation_lib.conv_templates: |
|
conversation_lib.default_conversation = conversation_lib.conv_templates[model_args.version] |
|
else: |
|
conversation_lib.default_conversation = conversation_lib.conv_templates["vicuna_v1"] |
|
|
|
if model_args.vision_tower is not None: |
|
model.get_model().initialize_vision_modules( |
|
model_args=model_args, |
|
fsdp=training_args.fsdp |
|
) |
|
|
|
vision_tower = model.get_vision_tower() |
|
vision_tower.to(dtype=torch.bfloat16 if training_args.bf16 else torch.float16, device=training_args.device) |
|
|
|
data_args.image_processor = vision_tower.image_processor |
|
data_args.is_multimodal = True |
|
|
|
model.config.image_aspect_ratio = data_args.image_aspect_ratio |
|
model.config.tokenizer_padding_side = tokenizer.padding_side |
|
model.config.tokenizer_model_max_length = tokenizer.model_max_length |
|
|
|
model.config.tune_mm_mlp_adapter = training_args.tune_mm_mlp_adapter = model_args.tune_mm_mlp_adapter |
|
if model_args.tune_mm_mlp_adapter: |
|
model.requires_grad_(False) |
|
for p in model.get_model().mm_projector.parameters(): |
|
p.requires_grad = True |
|
|
|
model.config.freeze_mm_mlp_adapter = training_args.freeze_mm_mlp_adapter |
|
if training_args.freeze_mm_mlp_adapter: |
|
for p in model.get_model().mm_projector.parameters(): |
|
p.requires_grad = False |
|
|
|
if training_args.bits in [4, 8]: |
|
model.get_model().mm_projector.to(dtype=compute_dtype, device=training_args.device) |
|
|
|
model.config.mm_use_im_start_end = data_args.mm_use_im_start_end = model_args.mm_use_im_start_end |
|
model.config.mm_projector_lr = training_args.mm_projector_lr |
|
training_args.use_im_start_end = model_args.mm_use_im_start_end |
|
model.config.mm_use_im_patch_token = model_args.mm_use_im_patch_token |
|
model.initialize_vision_tokenizer(model_args, tokenizer=tokenizer) |
|
|
|
if training_args.bits in [4, 8]: |
|
from peft.tuners.lora import LoraLayer |
|
for name, module in model.named_modules(): |
|
if isinstance(module, LoraLayer): |
|
if training_args.bf16: |
|
module = module.to(torch.bfloat16) |
|
if 'norm' in name: |
|
module = module.to(torch.float32) |
|
if 'lm_head' in name or 'embed_tokens' in name: |
|
if hasattr(module, 'weight'): |
|
if training_args.bf16 and module.weight.dtype == torch.float32: |
|
module = module.to(torch.bfloat16) |
|
|
|
data_module = make_supervised_data_module(tokenizer=tokenizer, |
|
data_args=data_args) |
|
|
|
|
|
|
|
class SaveCallback(TrainerCallback): |
|
|
|
def __init__(self): |
|
super().__init__() |
|
self.best_metric = None |
|
|
|
def on_evaluate(self, args, state, control, metrics, **kwargs): |
|
""" |
|
Custom logic for evaluating and saving the best model based on a chosen metric. |
|
|
|
Saves the model and configuration if a better metric is achieved during evaluation. |
|
""" |
|
metric_for_best_model = 'eval_loss' |
|
metric_value = metrics.get(metric_for_best_model) |
|
|
|
if self.best_metric is None or metric_value < self.best_metric: |
|
self.best_metric = metric_value |
|
best_model_dir = os.path.join(args.output_dir, 'best_eval_model') |
|
|
|
|
|
if hasattr(model, 'generation_config'): |
|
model.generation_config.save_pretrained(best_model_dir) |
|
|
|
|
|
model.config.save_pretrained(best_model_dir) |
|
|
|
if tokenizer is not None: |
|
tokenizer.save_pretrained(best_model_dir) |
|
|
|
|
|
if args.lora_enable: |
|
|
|
state_dict = get_peft_state_maybe_zero_3( |
|
model.named_parameters(), args.lora_bias |
|
) |
|
non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3( |
|
model.named_parameters() |
|
) |
|
if args.local_rank in [-1, 0]: |
|
model.save_pretrained(best_model_dir, state_dict=state_dict) |
|
torch.save(non_lora_state_dict, os.path.join(best_model_dir, 'non_lora_trainables.bin')) |
|
else: |
|
|
|
state_dict = get_non_vision_tower_state_maybe_zero_3( |
|
model.named_parameters() |
|
) |
|
if args.local_rank in [-1, 0]: |
|
model.save_pretrained(best_model_dir, state_dict=state_dict) |
|
|
|
safe_save_model_for_hf_trainer(trainer=trainer, output_dir=best_model_dir) |
|
|
|
check_trainable_parameters(model) |
|
|
|
compute_metrics_func = None |
|
|
|
if model_args.compute_metrics: |
|
compute_metrics_func = create_compute_metrics(tokenizer,vision_tower.num_patches,conversation_lib.default_conversation.sep2) |
|
|
|
model.to(training_args.device) |
|
|
|
trainer = LibraTrainer(model=model, |
|
tokenizer=tokenizer, |
|
args=training_args, |
|
callbacks=[SaveCallback()], |
|
compute_metrics=compute_metrics_func, |
|
**data_module) |
|
|
|
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")): |
|
trainer.train(resume_from_checkpoint=True) |
|
else: |
|
trainer.train() |
|
|
|
trainer.save_state() |
|
|
|
model.config.use_cache = True |
|
|
|
if training_args.lora_enable: |
|
state_dict = get_peft_state_maybe_zero_3( |
|
model.named_parameters(), training_args.lora_bias |
|
) |
|
non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3( |
|
model.named_parameters() |
|
) |
|
if training_args.local_rank == 0 or training_args.local_rank == -1: |
|
model.config.save_pretrained(training_args.output_dir) |
|
model.save_pretrained(training_args.output_dir, state_dict=state_dict) |
|
torch.save(non_lora_state_dict, os.path.join(training_args.output_dir, 'non_lora_trainables.bin')) |
|
else: |
|
safe_save_model_for_hf_trainer(trainer=trainer, |
|
output_dir=training_args.output_dir) |
|
|
|
|
|
if __name__ == "__main__": |
|
train() |