|
import argparse |
|
import torch |
|
|
|
from libra.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN |
|
from libra.conversation import conv_templates, SeparatorStyle |
|
from libra.model.builder import load_pretrained_model |
|
from libra.utils import disable_torch_init |
|
from libra.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria |
|
|
|
import requests |
|
import pydicom |
|
from PIL import Image |
|
from io import BytesIO |
|
from pydicom.pixel_data_handlers.util import apply_voi_lut |
|
from transformers import TextStreamer |
|
|
|
|
|
def load_images(image_file): |
|
""" |
|
Load an image from a local file, a URL, or a DICOM file. |
|
|
|
Args: |
|
image_file (str): The path or URL of the image file to load. |
|
|
|
Returns: |
|
PIL.Image.Image: The loaded image in RGB format. |
|
|
|
Raises: |
|
ValueError: If the DICOM file does not contain image data. |
|
TypeError: If the input is neither a valid file path nor a URL. |
|
""" |
|
if isinstance(image_file, str): |
|
|
|
if image_file.startswith(('http://', 'https://')): |
|
try: |
|
response = requests.get(image_file) |
|
response.raise_for_status() |
|
image = Image.open(BytesIO(response.content)).convert('RGB') |
|
except Exception as e: |
|
raise ValueError(f"Error loading image from URL: {image_file}\n{e}") |
|
|
|
|
|
elif image_file.lower().endswith('.dcm'): |
|
try: |
|
dicom = pydicom.dcmread(image_file) |
|
if 'PixelData' in dicom: |
|
data = apply_voi_lut(dicom.pixel_array, dicom) |
|
|
|
|
|
if dicom.PhotometricInterpretation == "MONOCHROME1": |
|
data = np.max(data) - data |
|
|
|
|
|
data = data - np.min(data) |
|
data = data / np.max(data) |
|
data = (data * 255).astype(np.uint8) |
|
|
|
|
|
if data.ndim == 2: |
|
data = np.stack([data] * 3, axis=-1) |
|
|
|
image = Image.fromarray(data).convert('RGB') |
|
else: |
|
raise ValueError("DICOM file does not contain image data") |
|
except Exception as e: |
|
raise ValueError(f"Error loading DICOM file: {image_file}\n{e}") |
|
|
|
|
|
else: |
|
try: |
|
image = Image.open(image_file).convert('RGB') |
|
except Exception as e: |
|
raise ValueError(f"Error loading standard image file: {image_file}\n{e}") |
|
|
|
else: |
|
raise TypeError("image_file must be a string representing a file path or URL") |
|
|
|
return image |
|
|
|
def main(args): |
|
""" |
|
Main function to load a pretrained model, process images, and interact with the user through a conversation loop. |
|
Args: |
|
args (Namespace): A namespace object containing the following attributes: |
|
model_path (str): Path to the pretrained model. |
|
model_base (str): Base model name. |
|
load_8bit (bool): Flag to load the model in 8-bit precision. |
|
load_4bit (bool): Flag to load the model in 4-bit precision. |
|
device (str): Device to load the model on (e.g., 'cuda', 'cpu'). |
|
conv_mode (str, optional): Conversation mode to use. If None, it will be inferred from the model name. |
|
image_file (list): List of paths to image files to be processed. |
|
temperature (float): Sampling temperature for text generation. |
|
max_new_tokens (int): Maximum number of new tokens to generate. |
|
debug (bool): Flag to enable debug mode for additional output. |
|
Raises: |
|
EOFError: If an EOFError is encountered during user input, the loop will exit. |
|
""" |
|
|
|
disable_torch_init() |
|
|
|
model_name = get_model_name_from_path(args.model_path) |
|
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, device=args.device) |
|
|
|
if 'libra' in model_name.lower(): |
|
conv_mode = "libra_v1" |
|
|
|
if args.conv_mode is not None and conv_mode != args.conv_mode: |
|
print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(conv_mode, args.conv_mode, args.conv_mode)) |
|
else: |
|
args.conv_mode = conv_mode |
|
|
|
conv = conv_templates[args.conv_mode].copy() |
|
roles = conv.roles |
|
|
|
image=[] |
|
for path in args.image_file: |
|
img = load_images(path) |
|
image.append(img) |
|
|
|
|
|
if len(image) == 1: |
|
print("Contains only current image. Adding a dummy prior image.") |
|
image.append(image[0]) |
|
|
|
processed_images = [] |
|
for img_data in image: |
|
image_temp = process_images([img_data], image_processor, model.config)[0] |
|
image_temp = image_temp.to(device='cuda',non_blocking=True) |
|
processed_images.append(image_temp) |
|
|
|
cur_images = [processed_images[0]] |
|
prior_images = [processed_images[1]] |
|
image_tensor = torch.stack([torch.stack(cur_images), torch.stack(prior_images)]) |
|
image_tensor = image_tensor.to(model.device, dtype=torch.float16) |
|
|
|
while True: |
|
try: |
|
inp = input(f"{roles[0]}: ") |
|
except EOFError: |
|
inp = "" |
|
if not inp: |
|
print("exit...") |
|
break |
|
|
|
print(f"{roles[1]}: ", end="") |
|
|
|
if image is not None: |
|
|
|
if model.config.mm_use_im_start_end: |
|
inp = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + inp |
|
else: |
|
inp = DEFAULT_IMAGE_TOKEN + '\n' + inp |
|
image = None |
|
|
|
conv.append_message(conv.roles[0], inp) |
|
conv.append_message(conv.roles[1], None) |
|
prompt = conv.get_prompt() |
|
|
|
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device) |
|
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 |
|
keywords = [stop_str] |
|
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) |
|
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
|
|
attention_mask = torch.ones(input_ids.shape, dtype=torch.long) |
|
pad_token_id = tokenizer.pad_token_id |
|
|
|
with torch.inference_mode(): |
|
output_ids = model.generate( |
|
input_ids, |
|
images=image_tensor, |
|
do_sample=True if args.temperature > 0 else False, |
|
temperature=args.temperature, |
|
max_new_tokens=args.max_new_tokens, |
|
streamer=streamer, |
|
use_cache=True, |
|
attention_mask=attention_mask, |
|
pad_token_id=pad_token_id, |
|
stopping_criteria=[stopping_criteria]) |
|
|
|
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:],skip_special_tokens=True).strip() |
|
conv.messages[-1][-1] = outputs |
|
|
|
if args.debug: |
|
print("\n", {"prompt": prompt, "outputs": outputs}, "\n") |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--model-path", type=str, default="X-iZhang/libra-v1.0-7b") |
|
parser.add_argument("--model-base", type=str, default=None) |
|
parser.add_argument("--image-file", type=str, nargs="+", required=True, help="List of image files to process.") |
|
parser.add_argument("--device", type=str, default="cuda") |
|
parser.add_argument("--conv-mode", type=str, default="libra_v1") |
|
parser.add_argument("--temperature", type=float, default=0.5) |
|
parser.add_argument("--max-new-tokens", type=int, default=512) |
|
parser.add_argument("--load-8bit", action="store_true") |
|
parser.add_argument("--load-4bit", action="store_true") |
|
parser.add_argument("--debug", action="store_true") |
|
args = parser.parse_args() |
|
|
|
main(args) |