|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from transformers import AutoImageProcessor, AutoModel, AutoConfig |
|
|
|
class DINOVisionTower(nn.Module): |
|
def __init__(self, vision_tower, args, delay_load=False): |
|
super().__init__() |
|
|
|
self.is_loaded = False |
|
|
|
self.vision_tower_name = vision_tower |
|
self.select_layer = args.mm_vision_select_layer |
|
self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch') |
|
|
|
if not delay_load: |
|
self.load_model() |
|
elif getattr(args, 'unfreeze_mm_vision_tower', False): |
|
self.load_model() |
|
else: |
|
self.cfg_only = AutoConfig.from_pretrained(self.vision_tower_name) |
|
|
|
def load_model(self): |
|
if self.is_loaded: |
|
print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name)) |
|
return |
|
|
|
self.image_processor = AutoImageProcessor.from_pretrained(self.vision_tower_name) |
|
self.vision_tower = AutoModel.from_pretrained(self.vision_tower_name) |
|
self.vision_tower.requires_grad_(False) |
|
|
|
self.is_loaded = True |
|
|
|
def get_features(self, images): |
|
outputs = self.vision_tower(images, output_hidden_states=True) |
|
hidden_states = outputs.hidden_states |
|
|
|
if self.select_layer == "all": |
|
if self.select_feature == "patch": |
|
all_layers_features = [hidden_state[:, 1:, :].contiguous() for hidden_state in hidden_states[1:]] |
|
elif self.select_feature == "cls_patch": |
|
all_layers_features = [hidden_state.contiguous() for hidden_state in hidden_states[1:]] |
|
else: |
|
raise ValueError(f"Unexpected select feature: {self.select_feature}") |
|
|
|
return torch.stack(all_layers_features) |
|
else: |
|
selected_layer_features = hidden_states[int(self.select_layer)] |
|
|
|
if self.select_feature == "patch": |
|
selected_layer_features = selected_layer_features[:, 1:] |
|
elif self.select_feature == "cls_patch": |
|
selected_layer_features = selected_layer_features |
|
else: |
|
raise ValueError(f"Unexpected select feature: {self.select_feature}") |
|
|
|
return torch.stack([selected_layer_features]) |
|
|
|
@torch.no_grad() |
|
def forward(self, images): |
|
|
|
if images.shape[0] != 2: |
|
raise ValueError( |
|
f"Expected images.shape[0] == 2, but got {images.shape}. " |
|
"Ensure the input includes both current and previous images." |
|
) |
|
|
|
cur_images = images[0] |
|
prev_images = images[1] |
|
|
|
cur_features = self.get_features(cur_images) |
|
prev_features = self.get_features(prev_images) |
|
|
|
cur_features = cur_features.permute(1, 0, 2, 3) |
|
prev_features = prev_features.permute(1, 0, 2, 3) |
|
|
|
|
|
images_features = torch.stack([cur_features, prev_features]) |
|
|
|
return images_features |
|
|
|
@property |
|
def dummy_feature(self): |
|
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) |
|
|
|
@property |
|
def dtype(self): |
|
|
|
return self.vision_tower.dtype |
|
|
|
@property |
|
def device(self): |
|
return self.vision_tower.device |
|
|
|
@property |
|
def config(self): |
|
if self.is_loaded: |
|
return self.vision_tower.config |
|
else: |
|
return self.cfg_only |
|
|
|
@property |
|
def hidden_size(self): |
|
return self.config.hidden_size |
|
|
|
@property |
|
def num_patches(self): |
|
return (self.config.image_size // self.config.patch_size) ** 2 |
|
|
|
@property |
|
def num_layers(self): |
|
return self.config.num_hidden_layers |