|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from abc import ABC, abstractmethod |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from .multimodal_encoder.builder import build_vision_tower |
|
from .multimodal_projector.builder import build_vision_projector |
|
|
|
from libra.constants import ( |
|
IGNORE_INDEX, |
|
IMAGE_TOKEN_INDEX, |
|
DEFAULT_IMAGE_PATCH_TOKEN, |
|
DEFAULT_IM_START_TOKEN, |
|
DEFAULT_IM_END_TOKEN, |
|
) |
|
|
|
|
|
class LibraMetaModel: |
|
""" |
|
LibraMetaModel is a class that initializes and manages a multi-modal model with vision and projection modules. |
|
|
|
Attributes: |
|
config (object): Configuration object containing model parameters. |
|
vision_tower (object): Vision model component. |
|
mm_projector (object): Multi-modal projection module. |
|
|
|
Methods: |
|
__init__(config): |
|
Initializes the LibraMetaModel with the given configuration. |
|
|
|
get_vision_tower(): |
|
Retrieves the vision model component. If the vision model is a list, returns the first element. |
|
|
|
initialize_vision_modules(model_args, fsdp=None): |
|
Initializes the vision and projection modules based on the provided model arguments. |
|
Loads pre-trained weights for the multi-modal MLP adapter if available. |
|
""" |
|
def __init__(self, config): |
|
|
|
super(LibraMetaModel, self).__init__(config) |
|
|
|
if hasattr(config, "mm_vision_tower"): |
|
|
|
self.vision_tower = build_vision_tower(config, delay_load=True) |
|
self.mm_projector = build_vision_projector(config) |
|
|
|
def get_vision_tower(self): |
|
vision_tower = getattr(self, 'vision_tower', None) |
|
if type(vision_tower) is list: |
|
vision_tower = vision_tower[0] |
|
return vision_tower |
|
|
|
def initialize_vision_modules(self, model_args, fsdp=None): |
|
vision_tower = model_args.vision_tower |
|
mm_vision_select_layer = model_args.mm_vision_select_layer |
|
mm_vision_select_feature = model_args.mm_vision_select_feature |
|
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter |
|
|
|
self.config.mm_vision_tower = vision_tower |
|
|
|
if self.get_vision_tower() is None: |
|
vision_tower = build_vision_tower(model_args) |
|
|
|
if fsdp is not None and len(fsdp) > 0: |
|
self.vision_tower = [vision_tower] |
|
else: |
|
self.vision_tower = vision_tower |
|
else: |
|
if fsdp is not None and len(fsdp) > 0: |
|
vision_tower = self.vision_tower[0] |
|
else: |
|
vision_tower = self.vision_tower |
|
vision_tower.load_model() |
|
|
|
self.config.use_mm_proj = True |
|
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear') |
|
self.config.mm_hidden_size = vision_tower.hidden_size |
|
self.config.mm_vision_select_layer = mm_vision_select_layer |
|
self.config.mm_vision_select_feature = mm_vision_select_feature |
|
|
|
if getattr(self, 'mm_projector', None) is None: |
|
self.mm_projector = build_vision_projector(self.config) |
|
else: |
|
for p in self.mm_projector.parameters(): |
|
p.requires_grad = True |
|
|
|
if pretrain_mm_mlp_adapter is not None: |
|
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') |
|
|
|
def get_w(weights, keyword): |
|
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k} |
|
|
|
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector')) |
|
|
|
|
|
class LibraMetaForCausalLM(ABC): |
|
|
|
@abstractmethod |
|
def get_model(self): |
|
pass |
|
|
|
def get_vision_tower(self): |
|
return self.get_model().get_vision_tower() |
|
|
|
def encode_images(self, images): |
|
image_features_temp = self.get_model().get_vision_tower()(images) |
|
image_features = self.get_model().mm_projector(image_features_temp) |
|
|
|
return image_features |
|
|
|
def prepare_inputs_labels_for_multimodal( |
|
self, input_ids, attention_mask, past_key_values, labels, images |
|
): |
|
""" |
|
Prepare inputs and labels for multimodal tasks, applying different logic based on training or inference phase. |
|
|
|
Args: |
|
input_ids (Tensor): IDs of the input token sequence. |
|
attention_mask (Tensor): Attention mask. |
|
past_key_values (Tensor): Cached key and value for attention mechanism. |
|
labels (Tensor): Target labels. |
|
images (Tensor): Image inputs. |
|
|
|
Returns: |
|
Tuple: Processed input_ids, attention_mask, past_key_values, multimodal_features, labels |
|
""" |
|
|
|
vision_tower = self.get_vision_tower() |
|
|
|
if vision_tower is None or images is None or input_ids.shape[1] == 1: |
|
if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1: |
|
attention_mask = torch.ones( |
|
(attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), |
|
dtype=attention_mask.dtype, |
|
device=attention_mask.device |
|
) |
|
return input_ids, attention_mask, past_key_values, None, labels |
|
|
|
if input_ids.size(0) != images.size(0) and input_ids.size(0) != images.size(1): |
|
|
|
|
|
|
|
|
|
num_groups = input_ids.size(0) |
|
images_1 = images[:num_groups] |
|
images_2 = images[num_groups:] |
|
images = torch.cat((images_1, images_2), dim=1) |
|
images = images.permute(1, 0, 2, 3, 4).contiguous() |
|
|
|
image_features = self.encode_images(images) |
|
|
|
new_input_embeds = [] |
|
new_labels = [] if labels is not None else None |
|
cur_image_idx = 0 |
|
for batch_idx, cur_input_ids in enumerate(input_ids): |
|
if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0: |
|
|
|
cur_image_features = image_features[cur_image_idx] |
|
cur_input_embeds_temp = self.get_model().embed_tokens(cur_input_ids) |
|
cur_input_embeds = torch.cat([cur_input_embeds_temp, cur_image_features[0:0]], dim=0) |
|
|
|
new_input_embeds.append(cur_input_embeds) |
|
if labels is not None: |
|
new_labels.append(labels[batch_idx]) |
|
cur_image_idx += 1 |
|
|
|
continue |
|
|
|
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] |
|
cur_new_input_embeds = [] |
|
|
|
if labels is not None: |
|
cur_labels = labels[batch_idx] |
|
cur_new_labels = [] |
|
|
|
assert cur_labels.shape == cur_input_ids.shape |
|
|
|
while image_token_indices.numel() > 0: |
|
|
|
cur_image_features = image_features[cur_image_idx] |
|
image_token_start = image_token_indices[0] |
|
|
|
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): |
|
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start-1]).detach()) |
|
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start-1:image_token_start])) |
|
cur_new_input_embeds.append(cur_image_features) |
|
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start+1:image_token_start+2])) |
|
if labels is not None: |
|
cur_new_labels.append(cur_labels[:image_token_start]) |
|
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) |
|
cur_new_labels.append(cur_labels[image_token_start:image_token_start+1]) |
|
cur_labels_temp = cur_labels[image_token_start+2:] |
|
else: |
|
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start])) |
|
cur_new_input_embeds.append(cur_image_features) |
|
|
|
if labels is not None: |
|
cur_new_labels.append(cur_labels[:image_token_start]) |
|
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) |
|
cur_labels_temp = cur_labels[image_token_start+1:] |
|
|
|
cur_image_idx += 1 |
|
|
|
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): |
|
cur_input_ids = cur_input_ids[image_token_start+2:] |
|
else: |
|
cur_input_ids = cur_input_ids[image_token_start+1:] |
|
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] |
|
|
|
if cur_input_ids.numel() > 0: |
|
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): |
|
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids).detach()) |
|
else: |
|
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids)) |
|
if labels is not None: |
|
cur_new_labels.append(cur_labels_temp) |
|
|
|
cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds] |
|
|
|
cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0) |
|
|
|
new_input_embeds.append(cur_new_input_embeds) |
|
|
|
if labels is not None: |
|
cur_new_labels = torch.cat(cur_new_labels, dim=0) |
|
new_labels.append(cur_new_labels) |
|
|
|
|
|
if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds): |
|
max_len = max(x.shape[0] for x in new_input_embeds) |
|
|
|
new_input_embeds_align = [] |
|
for cur_new_embed in new_input_embeds: |
|
cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0) |
|
new_input_embeds_align.append(cur_new_embed) |
|
new_input_embeds = torch.stack(new_input_embeds_align, dim=0) |
|
|
|
if labels is not None: |
|
new_labels_align = [] |
|
_new_labels = new_labels |
|
for cur_new_label in new_labels: |
|
cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0) |
|
new_labels_align.append(cur_new_label) |
|
new_labels = torch.stack(new_labels_align, dim=0) |
|
|
|
if attention_mask is not None: |
|
new_attention_mask = [] |
|
for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels): |
|
new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device) |
|
new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device) |
|
cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0) |
|
new_attention_mask.append(cur_new_attention_mask) |
|
attention_mask = torch.stack(new_attention_mask, dim=0) |
|
assert attention_mask.shape == new_labels.shape |
|
else: |
|
|
|
new_input_embeds = torch.stack(new_input_embeds, dim=0) |
|
|
|
if labels is not None: |
|
new_labels = torch.stack(new_labels, dim=0) |
|
|
|
if attention_mask is not None: |
|
new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device) |
|
attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1) |
|
|
|
assert attention_mask.shape == new_input_embeds.shape[:2] |
|
|
|
return None, attention_mask, past_key_values, new_input_embeds, new_labels |
|
|
|
def initialize_vision_tokenizer(self, model_args, tokenizer): |
|
|
|
if model_args.mm_use_im_patch_token: |
|
|
|
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) |
|
self.resize_token_embeddings(len(tokenizer)) |
|
|
|
if model_args.mm_use_im_start_end: |
|
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) |
|
self.resize_token_embeddings(len(tokenizer)) |
|
|
|
if num_new_tokens > 0: |
|
input_embeddings = self.get_input_embeddings().weight.data |
|
output_embeddings = self.get_output_embeddings().weight.data |
|
|
|
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( |
|
dim=0, keepdim=True) |
|
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( |
|
dim=0, keepdim=True) |
|
|
|
input_embeddings[-num_new_tokens:] = input_embeddings_avg |
|
output_embeddings[-num_new_tokens:] = output_embeddings_avg |
|
|
|
if model_args.tune_mm_mlp_adapter: |
|
for p in self.get_input_embeddings().parameters(): |
|
p.requires_grad = True |
|
for p in self.get_output_embeddings().parameters(): |
|
p.requires_grad = False |
|
|
|
if model_args.pretrain_mm_mlp_adapter: |
|
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu') |
|
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight'] |
|
assert num_new_tokens == 2 |
|
if input_embeddings.shape == embed_tokens_weight.shape: |
|
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:] |
|
elif embed_tokens_weight.shape[0] == num_new_tokens: |
|
input_embeddings[-num_new_tokens:] = embed_tokens_weight |
|
else: |
|
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.") |
|
|
|
|
|
elif model_args.mm_use_im_patch_token: |
|
|
|
if model_args.tune_mm_mlp_adapter: |
|
|
|
for p in self.get_input_embeddings().parameters(): |
|
p.requires_grad = False |
|
|
|
for p in self.get_output_embeddings().parameters(): |
|
p.requires_grad = False |