Libra / libra /eval /run_libra.py
X-iZhang's picture
Update libra/eval/run_libra.py
7c1d7f9 verified
raw
history blame
9.31 kB
import argparse
import torch
from libra.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from libra.conversation import conv_templates, SeparatorStyle
from libra.model.builder import load_pretrained_model
from libra.utils import disable_torch_init
from libra.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path, KeywordsStoppingCriteria
import requests
import pydicom
from PIL import Image
from io import BytesIO
from pydicom.pixel_data_handlers.util import apply_voi_lut
import datetime
def load_model(model_path, model_base=None):
"""
Load the model and return its components.
Args:
model_path (str): Path to the model.
model_base (str): Base model, if any.
Returns:
tuple: (tokenizer, model, image_processor, context_len)
"""
disable_torch_init()
model_name = get_model_name_from_path(model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, model_base, model_name)
model.to("cpu")
return tokenizer, model, image_processor, context_len
def load_images(image_file):
"""
Load an image from a local file, a URL, or a DICOM file.
Args:
image_file (str): The path or URL of the image file to load.
Returns:
PIL.Image.Image: The loaded image in RGB format.
Raises:
ValueError: If the DICOM file does not contain image data.
TypeError: If the input is neither a valid file path nor a URL.
"""
if isinstance(image_file, str):
# Case 1: Load from URL
if image_file.startswith(('http://', 'https://')):
try:
response = requests.get(image_file)
response.raise_for_status()
image = Image.open(BytesIO(response.content)).convert('RGB')
except Exception as e:
raise ValueError(f"Error loading image from URL: {image_file}\n{e}")
# Case 2: Load from DICOM file
elif image_file.lower().endswith('.dcm'):
try:
dicom = pydicom.dcmread(image_file)
if 'PixelData' in dicom:
data = apply_voi_lut(dicom.pixel_array, dicom)
# Handle MONOCHROME1 images
if dicom.PhotometricInterpretation == "MONOCHROME1":
data = np.max(data) - data
# Normalize the image data
data = data - np.min(data)
data = data / np.max(data)
data = (data * 255).astype(np.uint8)
# Convert to 3-channel RGB if necessary
if data.ndim == 2:
data = np.stack([data] * 3, axis=-1)
image = Image.fromarray(data).convert('RGB')
else:
raise ValueError("DICOM file does not contain image data")
except Exception as e:
raise ValueError(f"Error loading DICOM file: {image_file}\n{e}")
# Case 3: Load standard image files (e.g., PNG, JPG)
else:
try:
image = Image.open(image_file).convert('RGB')
except Exception as e:
raise ValueError(f"Error loading standard image file: {image_file}\n{e}")
else:
raise TypeError("image_file must be a string representing a file path or URL")
return image
def get_image_tensors(image_path, image_processor, model, device='cpu'):
# Load and preprocess the images
if isinstance(image_path, str):
image = []
img = load_images(image_path)
image.append(img)
elif isinstance(image_path, (list, tuple)):
image = []
for path in image_path:
img = load_images(path)
image.append(img)
else:
raise TypeError("image_file must be a string or a str/list/tuple of strings")
# Ensure two images are present
if len(image) != 2:
image.append(image[0])
if model.config.mm_projector_type == "TAC":
print("Contains only current image. Adding a dummy prior image for TAC.")
# Process each image
processed_images = []
for img_data in image:
image_temp = process_images([img_data], image_processor, model.config)[0]
image_temp = image_temp.to(device=device, non_blocking=True)
processed_images.append(image_temp)
# Separate current and prior images
cur_images = [processed_images[0]]
prior_images = [processed_images[1]]
# Stack and return as batched tensor
batch_images = torch.stack([torch.stack(cur_images), torch.stack(prior_images)])
return batch_images
def libra_eval(
model_path=None,
model_base=None,
image_file=None,
query=None,
conv_mode=None,
temperature=0.2,
top_p=None,
num_beams=1,
num_return_sequences=None,
length_penalty=1.0,
max_new_tokens=128,
libra_model=None
):
# Model
disable_torch_init()
device = "cpu"
if libra_model is not None:
tokenizer, model, image_processor, context_len = libra_model
model_name = model.config._name_or_path
else:
tokenizer, model, image_processor, context_len = load_model(model_path, model_base)
model_name = get_model_name_from_path(model_path)
qs = query
if model.config.mm_use_im_start_end:
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
else:
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
if 'llama-3' in model_name.lower():
mode_conv = "libra_llama_3"
if 'mistral' in model_name.lower():
mode_conv = "mistral_instruct"
else:
mode_conv = "libra_v1"
if conv_mode is not None and mode_conv != conv_mode:
print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(mode_conv, conv_mode, conv_mode))
else:
conv_mode = mode_conv
conv = conv_templates[conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(device)
attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=device)
pad_token_id = tokenizer.pad_token_id
image_tensor = get_image_tensors(image_file, image_processor, model, device=device)
stop_str = conv.sep if conv.sep_style not in {SeparatorStyle.TWO, SeparatorStyle.LLAMA_3} else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
with torch.inference_mode():
if num_beams > 1:
output_ids = model.generate(
input_ids=input_ids,
images=image_tensor,
do_sample=False,
num_beams=num_beams,
no_repeat_ngram_size=3,
max_new_tokens=max_new_tokens,
stopping_criteria=[stopping_criteria],
use_cache=True,
length_penalty=length_penalty,
output_scores=True,
attention_mask=attention_mask,
pad_token_id=pad_token_id,
num_return_sequences = num_return_sequences)
else:
output_ids = model.generate(
input_ids,
images=image_tensor,
do_sample= True,
temperature=temperature,
top_p=top_p,
num_beams=num_beams,
no_repeat_ngram_size=3,
max_new_tokens=max_new_tokens,
attention_mask=attention_mask,
pad_token_id=pad_token_id,
stopping_criteria=[stopping_criteria],
use_cache=True)
input_token_len = input_ids.shape[1]
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
if n_diff_input_output > 0:
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
outputs = outputs.strip()
if outputs.endswith(stop_str):
outputs = outputs[:-len(stop_str)]
outputs = outputs.strip()
return outputs
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, default="X-iZhang/libra-v1.0-7b")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--image-file", type=str, required=True)
parser.add_argument("--query", type=str, required=True)
parser.add_argument("--conv-mode", type=str, default="libra_v1")
parser.add_argument("--temperature", type=float, default=0.2)
parser.add_argument("--top_p", type=float, default=None)
parser.add_argument("--num_beams", type=int, default=1)
parser.add_argument("--num_return_sequences", type=int, default=None)
parser.add_argument("--length_penalty", type=float, default=1.0)
parser.add_argument("--max_new_tokens", type=int, default=128)
args = parser.parse_args()
libra_eval(**vars(args))