File size: 6,909 Bytes
23c9ef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#    Copyright 2024 Xi Zhang
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.

import torch
import torch.nn as nn
import torchvision.ops as ops
import re


class TAC(nn.Module):
    def __init__(self, config):
        super(TAC,self).__init__()

        self.mm_hidden_size = config.mm_hidden_size
        self.hidden_size = config.hidden_size
        self.num_attention_heads = config.num_attention_heads
        self.dropout = 0.1
        self.layers_number = 12 # RAD-DINO hidden layers

        # LFE
        self.LFE = nn.Sequential(
            ops.SqueezeExcitation(self.layers_number,self.layers_number // 2,activation=nn.GELU),
            nn.Conv2d(self.layers_number,self.layers_number // 2,kernel_size=1,bias=False),
            ops.SqueezeExcitation(self.layers_number // 2,self.layers_number // 4,activation=nn.GELU),
            nn.Conv2d(self.layers_number // 2,self.layers_number // 4,kernel_size=1,bias=False),
            ops.SqueezeExcitation(self.layers_number // 4,1,activation=nn.GELU),
            nn.Conv2d(self.layers_number // 4,1,kernel_size=1,bias=False)
        )
  
        self.LFE_prior_bias = nn.Parameter(torch.tensor(0.0, device=torch.device("cuda" if torch.cuda.is_available() else "cpu")))
        self.LFE_cos = nn.CosineSimilarity(dim=-1, eps=1e-6)
        
        # self-attention
        self.cur_self_attention = nn.MultiheadAttention(embed_dim=(self.mm_hidden_size), num_heads=self.num_attention_heads,batch_first=True,add_bias_kv=True)
        self.prior_self_attention = nn.MultiheadAttention(embed_dim=(self.mm_hidden_size), num_heads=self.num_attention_heads,batch_first=True,add_bias_kv=True)
        self.cros_attention = nn.MultiheadAttention(embed_dim=(self.mm_hidden_size), num_heads=self.num_attention_heads,batch_first=True,add_bias_kv=True)
        
        self.norm1 = nn.LayerNorm(self.mm_hidden_size)
        self.norm2 = nn.LayerNorm(self.mm_hidden_size)
        self.norm3 = nn.LayerNorm(self.mm_hidden_size)
        self.norm4 = nn.LayerNorm(self.mm_hidden_size)
        
        self.mlp_attn = nn.Sequential(
            nn.Linear(self.mm_hidden_size, self.mm_hidden_size),
            nn.GELU(),
            nn.Dropout(self.dropout),
            nn.Linear(self.mm_hidden_size, self.mm_hidden_size),
            nn.Dropout(self.dropout)
        )

        self.mlp_final = nn.Sequential(
            nn.Linear(self.mm_hidden_size, self.hidden_size),
            nn.GELU(),
            nn.Linear(self.hidden_size, self.hidden_size),
            nn.GELU(),
            nn.Linear(self.hidden_size, self.hidden_size),
            nn.GELU(),
            nn.Linear(self.hidden_size, self.hidden_size)
        )

        self.dropout1 = nn.Dropout(self.dropout)
        self.dropout2 = nn.Dropout(self.dropout)
        self.dropout3 = nn.Dropout(self.dropout)
    
    def calculate_cosine_similarity(self, tensor1, tensor2):

        assert tensor1.shape == tensor2.shape, "The shapes of the two tensors must be the same"

        tensor1_flat = tensor1.view(tensor1.size(0), -1)
        tensor2_flat = tensor2.view(tensor2.size(0), -1)

        tensor1_flat_normalized = tensor1_flat / tensor1_flat.norm(dim=-1, keepdim=True)
        tensor2_flat_normalized = tensor2_flat / tensor2_flat.norm(dim=-1, keepdim=True)

        cosine_similarities = self.LFE_cos(tensor1_flat_normalized, tensor2_flat_normalized)
        cosine_similarities_normalized = ((cosine_similarities + 1) / 2).pow(8)
        cosine_similarities_normalized = cosine_similarities_normalized.view(-1, 1, 1)

        return cosine_similarities_normalized 
    
    # self-attention block   
    def cur_self_att_block(self,x):
        x = self.cur_self_attention(x,x,x)[0]
        return self.dropout1(x)
    # self-attention block   
    def prior_self_att_block(self,x):
        x = self.prior_self_attention(x,x,x)[0]
        return self.dropout2(x)
    # cross attention block 
    def cros_att_block(self,x,y):
        x = self.cros_attention(x,y,y)[0]
        return self.dropout3(x)
    
    #TFM
    def TFM(self,cur_features,prev_features):
        
        cur_features_temp = cur_features
        prev_features_temp = prev_features
        
        cos= self.calculate_cosine_similarity(cur_features_temp,prev_features_temp)
        prev_weight = cos * self.LFE_prior_bias
        prev_features_temp = prev_features_temp + prev_weight
        
        cur_features = self.norm1(cur_features_temp + self.cur_self_att_block(cur_features_temp))
        prev_features = self.norm2(prev_features_temp + self.prior_self_att_block(prev_features_temp))
        combined_features = self.norm3(cur_features + self.cros_att_block(cur_features,prev_features))

        output = self.norm4(cur_features_temp + self.mlp_attn(combined_features))
        output = self.mlp_final(output)

        return output   
    
    def forward(self, image_features, *args, **kwargs): 
        cur_features, prev_features = image_features
        
        cur_features = self.LFE(cur_features).squeeze(1)
        prev_features= self.LFE(prev_features).squeeze(1)
        
        output = self.TFM(cur_features,prev_features)

        return output    
    
    @property
    def config(self):
        return {"mm_projector_type": 'TAC'}

class Projector(nn.Module):
    def __init__(self, base_projector):
        super().__init__()
        self.projector = base_projector

    def forward(self, image_features, *args, **kwargs):
        temp_features = image_features[0].squeeze(1)
        return self.projector(temp_features)


def build_vision_projector(config, delay_load=False, *args,**kwargs):
    projector_type = getattr(config, 'mm_projector_type', 'linear')
    
    if projector_type == 'linear':
        linear_layer = nn.Linear(config.mm_hidden_size, config.hidden_size)
        return Projector(linear_layer)

    mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
    if mlp_gelu_match:
        mlp_depth = int(mlp_gelu_match.group(1))
        modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)] 
        for _ in range(1, mlp_depth):
            modules.append(nn.GELU())
            modules.append(nn.Linear(config.hidden_size, config.hidden_size))
        return Projector(nn.Sequential(*modules))
    
    if projector_type == 'TAC':
        return TAC(config)

    raise ValueError(f'Unknown projector type: {projector_type}')