File size: 15,773 Bytes
23c9ef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
#    Copyright 2024 Xi Zhang
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.

from abc import ABC, abstractmethod

import torch
import torch.nn as nn

from .multimodal_encoder.builder import build_vision_tower
from .multimodal_projector.builder import build_vision_projector

from libra.constants import (
    IGNORE_INDEX,  
    IMAGE_TOKEN_INDEX,  
    DEFAULT_IMAGE_PATCH_TOKEN,  
    DEFAULT_IM_START_TOKEN, 
    DEFAULT_IM_END_TOKEN, 
)


class LibraMetaModel:
    """
    LibraMetaModel is a class that initializes and manages a multi-modal model with vision and projection modules.

    Attributes:
        config (object): Configuration object containing model parameters.
        vision_tower (object): Vision model component.
        mm_projector (object): Multi-modal projection module.

    Methods:
        __init__(config):
            Initializes the LibraMetaModel with the given configuration.
        
        get_vision_tower():
            Retrieves the vision model component. If the vision model is a list, returns the first element.
        
        initialize_vision_modules(model_args, fsdp=None):
            Initializes the vision and projection modules based on the provided model arguments.
            Loads pre-trained weights for the multi-modal MLP adapter if available.
    """
    def __init__(self, config):
 
        super(LibraMetaModel, self).__init__(config)

        if hasattr(config, "mm_vision_tower"):

            self.vision_tower = build_vision_tower(config, delay_load=True)
            self.mm_projector = build_vision_projector(config)

    def get_vision_tower(self):
        vision_tower = getattr(self, 'vision_tower', None)
        if type(vision_tower) is list:
            vision_tower = vision_tower[0]
        return vision_tower

    def initialize_vision_modules(self, model_args, fsdp=None):
        vision_tower = model_args.vision_tower
        mm_vision_select_layer = model_args.mm_vision_select_layer
        mm_vision_select_feature = model_args.mm_vision_select_feature
        pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter 

        self.config.mm_vision_tower = vision_tower

        if self.get_vision_tower() is None:
            vision_tower = build_vision_tower(model_args)

            if fsdp is not None and len(fsdp) > 0:
                self.vision_tower = [vision_tower]
            else:
                self.vision_tower = vision_tower
        else:
            if fsdp is not None and len(fsdp) > 0:
                vision_tower = self.vision_tower[0]
            else:
                vision_tower = self.vision_tower
            vision_tower.load_model()

        self.config.use_mm_proj = True
        self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear') 
        self.config.mm_hidden_size = vision_tower.hidden_size 
        self.config.mm_vision_select_layer = mm_vision_select_layer 
        self.config.mm_vision_select_feature = mm_vision_select_feature 

        if getattr(self, 'mm_projector', None) is None:   
            self.mm_projector = build_vision_projector(self.config)
        else:
            for p in self.mm_projector.parameters():
                p.requires_grad = True

        if pretrain_mm_mlp_adapter is not None:
            mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') 

            def get_w(weights, keyword):
                return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}

            self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))


class LibraMetaForCausalLM(ABC):

    @abstractmethod
    def get_model(self):
        pass

    def get_vision_tower(self):
        return self.get_model().get_vision_tower()

    def encode_images(self, images):
        image_features_temp = self.get_model().get_vision_tower()(images)
        image_features = self.get_model().mm_projector(image_features_temp)
        
        return image_features

    def prepare_inputs_labels_for_multimodal(
        self, input_ids, attention_mask, past_key_values, labels, images
    ):
        """
        Prepare inputs and labels for multimodal tasks, applying different logic based on training or inference phase.
        
        Args:
            input_ids (Tensor): IDs of the input token sequence.
            attention_mask (Tensor): Attention mask.
            past_key_values (Tensor): Cached key and value for attention mechanism.
            labels (Tensor): Target labels.
            images (Tensor): Image inputs.

        Returns:
            Tuple: Processed input_ids, attention_mask, past_key_values, multimodal_features, labels
        """

        vision_tower = self.get_vision_tower()

        if vision_tower is None or images is None or input_ids.shape[1] == 1:
            if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1:
                attention_mask = torch.ones(
                    (attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1),
                    dtype=attention_mask.dtype,
                    device=attention_mask.device
                )
            return input_ids, attention_mask, past_key_values, None, labels
        
        if input_ids.size(0) != images.size(0) and input_ids.size(0) != images.size(1):
            # print(
            #     "Warning: Dimension mismatch detected. Adjust dimensions for beam-search.\n"
            #     "Program continues..."
            # )
            num_groups = input_ids.size(0)
            images_1 = images[:num_groups]
            images_2 = images[num_groups:]
            images = torch.cat((images_1, images_2), dim=1)
            images = images.permute(1, 0, 2, 3, 4).contiguous()
               
        image_features = self.encode_images(images)  
        
        new_input_embeds = []
        new_labels = [] if labels is not None else None
        cur_image_idx = 0
        for batch_idx, cur_input_ids in enumerate(input_ids):
            if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0:

                cur_image_features = image_features[cur_image_idx]
                cur_input_embeds_temp = self.get_model().embed_tokens(cur_input_ids)
                cur_input_embeds = torch.cat([cur_input_embeds_temp, cur_image_features[0:0]], dim=0)
            
                new_input_embeds.append(cur_input_embeds)
                if labels is not None:
                    new_labels.append(labels[batch_idx])
                cur_image_idx += 1

                continue
                
            image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
            cur_new_input_embeds = []
            
            if labels is not None:
                cur_labels = labels[batch_idx]
                cur_new_labels = [] 

                assert cur_labels.shape == cur_input_ids.shape
            
            while image_token_indices.numel() > 0:

                cur_image_features = image_features[cur_image_idx]
                image_token_start = image_token_indices[0]

                if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
                    cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start-1]).detach())
                    cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start-1:image_token_start]))
                    cur_new_input_embeds.append(cur_image_features)
                    cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start+1:image_token_start+2]))
                    if labels is not None:
                        cur_new_labels.append(cur_labels[:image_token_start])
                        cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
                        cur_new_labels.append(cur_labels[image_token_start:image_token_start+1])
                        cur_labels_temp = cur_labels[image_token_start+2:]
                else:
                    cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start])) 
                    cur_new_input_embeds.append(cur_image_features) 

                    if labels is not None:
                        cur_new_labels.append(cur_labels[:image_token_start]) 
                        cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) 
                        cur_labels_temp = cur_labels[image_token_start+1:] 
                
                cur_image_idx += 1
                
                if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
                    cur_input_ids = cur_input_ids[image_token_start+2:]
                else:
                    cur_input_ids = cur_input_ids[image_token_start+1:]
                image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]

            if cur_input_ids.numel() > 0:
                if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
                    cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids).detach())
                else:
                    cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids))
                if labels is not None:
                    cur_new_labels.append(cur_labels_temp)
            
            cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds]

            cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0) 

            new_input_embeds.append(cur_new_input_embeds) 

            if labels is not None:
                cur_new_labels = torch.cat(cur_new_labels, dim=0) 
                new_labels.append(cur_new_labels) 
       
                
        if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds):
            max_len = max(x.shape[0] for x in new_input_embeds)

            new_input_embeds_align = []
            for cur_new_embed in new_input_embeds:
                cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0)
                new_input_embeds_align.append(cur_new_embed)
            new_input_embeds = torch.stack(new_input_embeds_align, dim=0)

            if labels is not None:
                new_labels_align = []
                _new_labels = new_labels
                for cur_new_label in new_labels:
                    cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0)
                    new_labels_align.append(cur_new_label)
                new_labels = torch.stack(new_labels_align, dim=0)

            if attention_mask is not None:
                new_attention_mask = []
                for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels):
                    new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device)
                    new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device)
                    cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0)
                    new_attention_mask.append(cur_new_attention_mask)
                attention_mask = torch.stack(new_attention_mask, dim=0)
                assert attention_mask.shape == new_labels.shape
        else:
            
            new_input_embeds = torch.stack(new_input_embeds, dim=0) 
            
            if labels is not None:
                new_labels  = torch.stack(new_labels, dim=0)

            if attention_mask is not None:
                new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device)
                attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1)

                assert attention_mask.shape == new_input_embeds.shape[:2]
        
        return None, attention_mask, past_key_values, new_input_embeds, new_labels 

    def initialize_vision_tokenizer(self, model_args, tokenizer):

        if model_args.mm_use_im_patch_token:
            
            tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
            self.resize_token_embeddings(len(tokenizer))
            
        if model_args.mm_use_im_start_end:
            num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
            self.resize_token_embeddings(len(tokenizer))

            if num_new_tokens > 0:
                input_embeddings = self.get_input_embeddings().weight.data
                output_embeddings = self.get_output_embeddings().weight.data

                input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
                    dim=0, keepdim=True)
                output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
                    dim=0, keepdim=True)

                input_embeddings[-num_new_tokens:] = input_embeddings_avg
                output_embeddings[-num_new_tokens:] = output_embeddings_avg

            if model_args.tune_mm_mlp_adapter:
                for p in self.get_input_embeddings().parameters():
                    p.requires_grad = True
                for p in self.get_output_embeddings().parameters():
                    p.requires_grad = False

            if model_args.pretrain_mm_mlp_adapter:
                mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
                embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
                assert num_new_tokens == 2
                if input_embeddings.shape == embed_tokens_weight.shape:
                    input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
                elif embed_tokens_weight.shape[0] == num_new_tokens:
                    input_embeddings[-num_new_tokens:] = embed_tokens_weight
                else:
                    raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
        

        elif model_args.mm_use_im_patch_token:
            
            if model_args.tune_mm_mlp_adapter:
                
                for p in self.get_input_embeddings().parameters():
                    p.requires_grad = False
                
                for p in self.get_output_embeddings().parameters():
                    p.requires_grad = False