Spaces:
Running
Running
File size: 10,992 Bytes
23c9ef8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import argparse
import torch
import os
import json
from tqdm import tqdm
import shortuuid
import numpy as np
import re
from libra.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from libra.conversation import conv_templates, SeparatorStyle
from libra.model.builder import load_pretrained_model
from libra.utils import disable_torch_init
from libra.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path, KeywordsStoppingCriteria
import math
import pydicom
from PIL import Image
from io import BytesIO
from pydicom.pixel_data_handlers.util import apply_voi_lut
def split_list(lst, n):
"""Split a list into n (roughly) equal-sized chunks"""
chunk_size = math.ceil(len(lst) / n) # integer division
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
def get_chunk(lst, n, k):
chunks = split_list(lst, n)
return chunks[k]
def load_images(image_file):
"""
Load an image from a local file, a URL, or a DICOM file.
Args:
image_file (str): The path or URL of the image file to load.
Returns:
PIL.Image.Image: The loaded image in RGB format.
Raises:
ValueError: If the DICOM file does not contain image data.
TypeError: If the input is neither a valid file path nor a URL.
"""
if isinstance(image_file, str):
# Case 1: Load from URL
if image_file.startswith(('http://', 'https://')):
try:
response = requests.get(image_file)
response.raise_for_status()
image = Image.open(BytesIO(response.content)).convert('RGB')
except Exception as e:
raise ValueError(f"Error loading image from URL: {image_file}\n{e}")
# Case 2: Load from DICOM file
elif image_file.lower().endswith('.dcm'):
try:
dicom = pydicom.dcmread(image_file)
if 'PixelData' in dicom:
data = apply_voi_lut(dicom.pixel_array, dicom)
# Handle MONOCHROME1 images
if dicom.PhotometricInterpretation == "MONOCHROME1":
data = np.max(data) - data
# Normalize the image data
data = data - np.min(data)
data = data / np.max(data)
data = (data * 255).astype(np.uint8)
# Convert to 3-channel RGB if necessary
if data.ndim == 2:
data = np.stack([data] * 3, axis=-1)
image = Image.fromarray(data).convert('RGB')
else:
raise ValueError("DICOM file does not contain image data")
except Exception as e:
raise ValueError(f"Error loading DICOM file: {image_file}\n{e}")
# Case 3: Load standard image files (e.g., PNG, JPG)
else:
try:
image = Image.open(image_file).convert('RGB')
except Exception as e:
raise ValueError(f"Error loading standard image file: {image_file}\n{e}")
else:
raise TypeError("image_file must be a string representing a file path or URL")
return image
def get_image_tensors(image_file, image_folder, image_processor, model, device='cuda'):
# Load and preprocess the images
if isinstance(image_file, str):
image = []
image_path = os.path.join(image_folder, image_file)
img = load_images(image_path)
image.append(img)
elif isinstance(image_file, (list, tuple)):
image = []
image_paths = [os.path.join(image_folder, file_name) for file_name in image_file]
for path in image_paths:
img = load_images(path)
image.append(img)
else:
raise TypeError("image_file must be a string or a str/list/tuple of strings")
# Ensure two images are present
if len(image) != 2:
image.append(image[0])
if model.config.mm_projector_type == "TAC":
print("Contains only current image. Adding a dummy prior image for TAC.")
# Process each image
processed_images = []
for img_data in image:
image_temp = process_images([img_data], image_processor, model.config)[0]
image_temp = image_temp.to(device=device, non_blocking=True)
processed_images.append(image_temp)
# Separate current and prior images
cur_images = [processed_images[0]]
prior_images = [processed_images[1]]
# Stack and return as batched tensor
batch_images = torch.stack([torch.stack(cur_images), torch.stack(prior_images)])
return batch_images
def eval_model(args):
"""
Evaluate a pre-trained model on a set of questions and images.
Args:
args (Namespace): A namespace object containing the following attributes:
- model_path (str): Path to the pre-trained model.
- model_base (str): Base model name.
- question_file (str): Path to the JSON file containing questions.
- num_chunks (int): Number of chunks to split the questions into.
- chunk_idx (int): Index of the chunk to process.
- answers_file (str): Path to the file where answers will be saved.
- image_folder (str): Folder containing the images.
- conv_mode (str): Conversation mode to use.
- temperature (float): Sampling temperature for generation.
- top_p (float): Top-p sampling parameter.
- num_beams (int): Number of beams for beam search.
- max_new_tokens (int): Maximum number of new tokens to generate.
- length_penalty (float): Length penalty for beam search.
- num_return_sequences (int): Number of sequences to return.
Raises:
TypeError: If `image_file` is neither a string nor a list/tuple of strings.
Returns:
None
"""
# Model
disable_torch_init()
model_path = os.path.expanduser(args.model_path)
model_name = get_model_name_from_path(model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")]
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
answers_file = os.path.expanduser(args.answers_file)
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
ans_file = open(answers_file, "w")
for line in tqdm(questions):
idx = line["question_id"]
image_file = line["image"]
qs = line["text"]
cur_prompt = qs
if model.config.mm_use_im_start_end:
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
else:
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
conv = conv_templates[args.conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
attention_mask = torch.ones(input_ids.shape, dtype=torch.long)
pad_token_id = tokenizer.pad_token_id
image_tensors = get_image_tensors(image_file, args.image_folder, image_processor, model)
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
with torch.inference_mode():
torch.cuda.empty_cache()
if args.num_beams > 1:
output_ids = model.generate(
input_ids=input_ids,
images=image_tensors,
do_sample=False,
num_beams=args.num_beams,
no_repeat_ngram_size=3,
max_new_tokens=args.max_new_tokens,
stopping_criteria=[stopping_criteria],
use_cache=True,
length_penalty=args.length_penalty,
output_scores=True,
num_return_sequences = args.num_return_sequences,
attention_mask=attention_mask,
pad_token_id=pad_token_id)
else:
output_ids = model.generate(
input_ids,
images=image_tensors,
do_sample= True,
temperature=args.temperature,
top_p=args.top_p,
num_beams=args.num_beams,
no_repeat_ngram_size=3,
max_new_tokens=args.max_new_tokens,
stopping_criteria=[stopping_criteria],
use_cache=True,
attention_mask=attention_mask,
pad_token_id=pad_token_id)
torch.cuda.empty_cache()
input_token_len = input_ids.shape[1]
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
if n_diff_input_output > 0:
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
outputs = outputs.strip()
ans_id = shortuuid.uuid()
ans_file.write(json.dumps({"question_id": idx,
"prompt": cur_prompt,
"text": outputs,
"answer_id": ans_id,
"model_id": model_name,
"metadata": {}}) + "\n")
ans_file.flush()
ans_file.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, default="libra")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--image-folder", type=str, default="")
parser.add_argument("--question-file", type=str, default="question.jsonl")
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
parser.add_argument("--conv-mode", type=str, default="libra_v1")
parser.add_argument("--num-chunks", type=int, default=1)
parser.add_argument("--chunk-idx", type=int, default=0)
parser.add_argument("--temperature", type=float, default=0.2)
parser.add_argument("--top_p", type=float, default=None)
parser.add_argument("--num_beams", type=int, default=1)
parser.add_argument("--num_return_sequences", type=int, default=None)
parser.add_argument("--length_penalty", type=float, default=1.0)
parser.add_argument("--max_new_tokens", type=int, default=128)
args = parser.parse_args()
eval_model(args) |