File size: 10,992 Bytes
23c9ef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import argparse
import torch
import os
import json
from tqdm import tqdm
import shortuuid
import numpy as np
import re

from libra.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from libra.conversation import conv_templates, SeparatorStyle
from libra.model.builder import load_pretrained_model
from libra.utils import disable_torch_init
from libra.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path, KeywordsStoppingCriteria

import math
import pydicom
from PIL import Image
from io import BytesIO
from pydicom.pixel_data_handlers.util import apply_voi_lut

def split_list(lst, n):
    """Split a list into n (roughly) equal-sized chunks"""
    chunk_size = math.ceil(len(lst) / n)  # integer division
    return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]


def get_chunk(lst, n, k):
    chunks = split_list(lst, n)
    return chunks[k]

def load_images(image_file):
    """
    Load an image from a local file, a URL, or a DICOM file.

    Args:
        image_file (str): The path or URL of the image file to load.

    Returns:
        PIL.Image.Image: The loaded image in RGB format.

    Raises:
        ValueError: If the DICOM file does not contain image data.
        TypeError: If the input is neither a valid file path nor a URL.
    """
    if isinstance(image_file, str):
        # Case 1: Load from URL
        if image_file.startswith(('http://', 'https://')):
            try:
                response = requests.get(image_file)
                response.raise_for_status()
                image = Image.open(BytesIO(response.content)).convert('RGB')
            except Exception as e:
                raise ValueError(f"Error loading image from URL: {image_file}\n{e}")

        # Case 2: Load from DICOM file
        elif image_file.lower().endswith('.dcm'):
            try:
                dicom = pydicom.dcmread(image_file)
                if 'PixelData' in dicom:
                    data = apply_voi_lut(dicom.pixel_array, dicom)

                    # Handle MONOCHROME1 images
                    if dicom.PhotometricInterpretation == "MONOCHROME1":
                        data = np.max(data) - data

                    # Normalize the image data
                    data = data - np.min(data)
                    data = data / np.max(data)
                    data = (data * 255).astype(np.uint8)

                    # Convert to 3-channel RGB if necessary
                    if data.ndim == 2:
                        data = np.stack([data] * 3, axis=-1)

                    image = Image.fromarray(data).convert('RGB')
                else:
                    raise ValueError("DICOM file does not contain image data")
            except Exception as e:
                raise ValueError(f"Error loading DICOM file: {image_file}\n{e}")

        # Case 3: Load standard image files (e.g., PNG, JPG)
        else:
            try:
                image = Image.open(image_file).convert('RGB')
            except Exception as e:
                raise ValueError(f"Error loading standard image file: {image_file}\n{e}")

    else:
        raise TypeError("image_file must be a string representing a file path or URL")

    return image

def get_image_tensors(image_file, image_folder, image_processor, model, device='cuda'):
    # Load and preprocess the images
    if isinstance(image_file, str):
        image = []
        image_path = os.path.join(image_folder, image_file)
        img = load_images(image_path)
        image.append(img)
    elif isinstance(image_file, (list, tuple)):
        image = []
        image_paths = [os.path.join(image_folder, file_name) for file_name in image_file]
        for path in image_paths:
            img = load_images(path)
            image.append(img)
    else:
        raise TypeError("image_file must be a string or a str/list/tuple of strings")

    # Ensure two images are present
    if len(image) != 2:
        image.append(image[0])  
        if model.config.mm_projector_type == "TAC":
            print("Contains only current image. Adding a dummy prior image for TAC.")

    # Process each image
    processed_images = []
    for img_data in image:
        image_temp = process_images([img_data], image_processor, model.config)[0]
        image_temp = image_temp.to(device=device, non_blocking=True)
        processed_images.append(image_temp)

    # Separate current and prior images
    cur_images = [processed_images[0]]
    prior_images = [processed_images[1]]

    # Stack and return as batched tensor
    batch_images = torch.stack([torch.stack(cur_images), torch.stack(prior_images)])

    return batch_images

def eval_model(args):
    """
    Evaluate a pre-trained model on a set of questions and images.
    Args:
        args (Namespace): A namespace object containing the following attributes:
            - model_path (str): Path to the pre-trained model.
            - model_base (str): Base model name.
            - question_file (str): Path to the JSON file containing questions.
            - num_chunks (int): Number of chunks to split the questions into.
            - chunk_idx (int): Index of the chunk to process.
            - answers_file (str): Path to the file where answers will be saved.
            - image_folder (str): Folder containing the images.
            - conv_mode (str): Conversation mode to use.
            - temperature (float): Sampling temperature for generation.
            - top_p (float): Top-p sampling parameter.
            - num_beams (int): Number of beams for beam search.
            - max_new_tokens (int): Maximum number of new tokens to generate.
            - length_penalty (float): Length penalty for beam search.
            - num_return_sequences (int): Number of sequences to return.
    Raises:
        TypeError: If `image_file` is neither a string nor a list/tuple of strings.
    Returns:
        None
    """
    # Model
    disable_torch_init()
    model_path = os.path.expanduser(args.model_path)
    model_name = get_model_name_from_path(model_path)
    tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
    
    questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")]
    questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
    answers_file = os.path.expanduser(args.answers_file)
    os.makedirs(os.path.dirname(answers_file), exist_ok=True)
    ans_file = open(answers_file, "w")

    for line in tqdm(questions):
        idx = line["question_id"]
        image_file = line["image"]
        qs = line["text"]
        cur_prompt = qs
        if model.config.mm_use_im_start_end:
            qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
        else:
            qs = DEFAULT_IMAGE_TOKEN + '\n' + qs

        conv = conv_templates[args.conv_mode].copy()
        conv.append_message(conv.roles[0], qs)
        conv.append_message(conv.roles[1], None)
        prompt = conv.get_prompt()

        input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
        
        attention_mask = torch.ones(input_ids.shape, dtype=torch.long)
        pad_token_id = tokenizer.pad_token_id
        
        image_tensors = get_image_tensors(image_file, args.image_folder, image_processor, model)

        stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
        keywords = [stop_str]
        stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)

        with torch.inference_mode():
            torch.cuda.empty_cache() 
            if args.num_beams > 1:
                output_ids = model.generate(
                    input_ids=input_ids,
                    images=image_tensors,
                    do_sample=False,
                    num_beams=args.num_beams,
                    no_repeat_ngram_size=3,
                    max_new_tokens=args.max_new_tokens,
                    stopping_criteria=[stopping_criteria],
                    use_cache=True,
                    length_penalty=args.length_penalty, 
                    output_scores=True,  
                    num_return_sequences = args.num_return_sequences,
                    attention_mask=attention_mask, 
                    pad_token_id=pad_token_id)
            else:
                output_ids = model.generate(
                    input_ids,
                    images=image_tensors,
                    do_sample= True,
                    temperature=args.temperature,
                    top_p=args.top_p,
                    num_beams=args.num_beams,
                    no_repeat_ngram_size=3,
                    max_new_tokens=args.max_new_tokens,
                    stopping_criteria=[stopping_criteria],
                    use_cache=True,
                    attention_mask=attention_mask, 
                    pad_token_id=pad_token_id)
            
        torch.cuda.empty_cache() 
        input_token_len = input_ids.shape[1]
        n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
        
        if n_diff_input_output > 0:
            print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
            
        outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
        outputs = outputs.strip()
        
        ans_id = shortuuid.uuid()
        ans_file.write(json.dumps({"question_id": idx,
                                   "prompt": cur_prompt,
                                   "text": outputs,
                                   "answer_id": ans_id,
                                   "model_id": model_name,
                                   "metadata": {}}) + "\n")
        ans_file.flush()
    ans_file.close()

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model-path", type=str, default="libra")
    parser.add_argument("--model-base", type=str, default=None)
    parser.add_argument("--image-folder", type=str, default="")
    parser.add_argument("--question-file", type=str, default="question.jsonl")
    parser.add_argument("--answers-file", type=str, default="answer.jsonl")
    parser.add_argument("--conv-mode", type=str, default="libra_v1")
    parser.add_argument("--num-chunks", type=int, default=1)
    parser.add_argument("--chunk-idx", type=int, default=0)
    parser.add_argument("--temperature", type=float, default=0.2)
    parser.add_argument("--top_p", type=float, default=None)
    parser.add_argument("--num_beams", type=int, default=1)
    parser.add_argument("--num_return_sequences", type=int, default=None)
    parser.add_argument("--length_penalty", type=float, default=1.0)
    parser.add_argument("--max_new_tokens", type=int, default=128)
    args = parser.parse_args()

    eval_model(args)