Spaces:
Sleeping
Sleeping
import numpy as np | |
import torch | |
from sklearn.metrics import f1_score, average_precision_score | |
from sklearn.metrics import precision_recall_curve, roc_curve | |
SMOOTH = 1e-6 | |
__all__ = ['get_f1_scores', 'get_ap_scores', 'batch_pix_accuracy', 'batch_intersection_union', 'get_iou', 'get_pr', | |
'get_roc', 'get_ap_multiclass'] | |
def get_iou(outputs: torch.Tensor, labels: torch.Tensor): | |
# You can comment out this line if you are passing tensors of equal shape | |
# But if you are passing output from UNet or something it will most probably | |
# be with the BATCH x 1 x H x W shape | |
outputs = outputs.squeeze(1) # BATCH x 1 x H x W => BATCH x H x W | |
labels = labels.squeeze(1) # BATCH x 1 x H x W => BATCH x H x W | |
intersection = (outputs & labels).float().sum((1, 2)) # Will be zero if Truth=0 or Prediction=0 | |
union = (outputs | labels).float().sum((1, 2)) # Will be zzero if both are 0 | |
iou = (intersection + SMOOTH) / (union + SMOOTH) # We smooth our devision to avoid 0/0 | |
return iou.cpu().numpy() | |
def get_f1_scores(predict, target, ignore_index=-1): | |
# Tensor process | |
batch_size = predict.shape[0] | |
predict = predict.data.cpu().numpy().reshape(-1) | |
target = target.data.cpu().numpy().reshape(-1) | |
pb = predict[target != ignore_index].reshape(batch_size, -1) | |
tb = target[target != ignore_index].reshape(batch_size, -1) | |
total = [] | |
for p, t in zip(pb, tb): | |
total.append(np.nan_to_num(f1_score(t, p))) | |
return total | |
def get_roc(predict, target, ignore_index=-1): | |
target_expand = target.unsqueeze(1).expand_as(predict) | |
target_expand_numpy = target_expand.data.cpu().numpy().reshape(-1) | |
# Tensor process | |
x = torch.zeros_like(target_expand) | |
t = target.unsqueeze(1).clamp(min=0) | |
target_1hot = x.scatter_(1, t, 1) | |
batch_size = predict.shape[0] | |
predict = predict.data.cpu().numpy().reshape(-1) | |
target = target_1hot.data.cpu().numpy().reshape(-1) | |
pb = predict[target_expand_numpy != ignore_index].reshape(batch_size, -1) | |
tb = target[target_expand_numpy != ignore_index].reshape(batch_size, -1) | |
total = [] | |
for p, t in zip(pb, tb): | |
total.append(roc_curve(t, p)) | |
return total | |
def get_pr(predict, target, ignore_index=-1): | |
target_expand = target.unsqueeze(1).expand_as(predict) | |
target_expand_numpy = target_expand.data.cpu().numpy().reshape(-1) | |
# Tensor process | |
x = torch.zeros_like(target_expand) | |
t = target.unsqueeze(1).clamp(min=0) | |
target_1hot = x.scatter_(1, t, 1) | |
batch_size = predict.shape[0] | |
predict = predict.data.cpu().numpy().reshape(-1) | |
target = target_1hot.data.cpu().numpy().reshape(-1) | |
pb = predict[target_expand_numpy != ignore_index].reshape(batch_size, -1) | |
tb = target[target_expand_numpy != ignore_index].reshape(batch_size, -1) | |
total = [] | |
for p, t in zip(pb, tb): | |
total.append(precision_recall_curve(t, p)) | |
return total | |
def get_ap_scores(predict, target, ignore_index=-1): | |
total = [] | |
for pred, tgt in zip(predict, target): | |
target_expand = tgt.unsqueeze(0).expand_as(pred) | |
target_expand_numpy = target_expand.data.cpu().numpy().reshape(-1) | |
# Tensor process | |
x = torch.zeros_like(target_expand) | |
t = tgt.unsqueeze(0).clamp(min=0).long() | |
target_1hot = x.scatter_(0, t, 1) | |
predict_flat = pred.data.cpu().numpy().reshape(-1) | |
target_flat = target_1hot.data.cpu().numpy().reshape(-1) | |
p = predict_flat[target_expand_numpy != ignore_index] | |
t = target_flat[target_expand_numpy != ignore_index] | |
total.append(np.nan_to_num(average_precision_score(t, p))) | |
return total | |
def get_ap_multiclass(predict, target): | |
total = [] | |
for pred, tgt in zip(predict, target): | |
predict_flat = pred.data.cpu().numpy().reshape(-1) | |
target_flat = tgt.data.cpu().numpy().reshape(-1) | |
total.append(np.nan_to_num(average_precision_score(target_flat, predict_flat))) | |
return total | |
def batch_precision_recall(predict, target, thr=0.5): | |
"""Batch Precision Recall | |
Args: | |
predict: input 4D tensor | |
target: label 4D tensor | |
""" | |
# _, predict = torch.max(predict, 1) | |
predict = predict > thr | |
predict = predict.data.cpu().numpy() + 1 | |
target = target.data.cpu().numpy() + 1 | |
tp = np.sum(((predict == 2) * (target == 2)) * (target > 0)) | |
fp = np.sum(((predict == 2) * (target == 1)) * (target > 0)) | |
fn = np.sum(((predict == 1) * (target == 2)) * (target > 0)) | |
precision = float(np.nan_to_num(tp / (tp + fp))) | |
recall = float(np.nan_to_num(tp / (tp + fn))) | |
return precision, recall | |
def batch_pix_accuracy(predict, target): | |
"""Batch Pixel Accuracy | |
Args: | |
predict: input 3D tensor | |
target: label 3D tensor | |
""" | |
# for thr in np.linspace(0, 1, slices): | |
_, predict = torch.max(predict, 0) | |
predict = predict.cpu().numpy() + 1 | |
target = target.cpu().numpy() + 1 | |
pixel_labeled = np.sum(target > 0) | |
pixel_correct = np.sum((predict == target) * (target > 0)) | |
assert pixel_correct <= pixel_labeled, \ | |
"Correct area should be smaller than Labeled" | |
return pixel_correct, pixel_labeled | |
def batch_intersection_union(predict, target, nclass): | |
"""Batch Intersection of Union | |
Args: | |
predict: input 3D tensor | |
target: label 3D tensor | |
nclass: number of categories (int) | |
""" | |
_, predict = torch.max(predict, 0) | |
mini = 1 | |
maxi = nclass | |
nbins = nclass | |
predict = predict.cpu().numpy() + 1 | |
target = target.cpu().numpy() + 1 | |
predict = predict * (target > 0).astype(predict.dtype) | |
intersection = predict * (predict == target) | |
# areas of intersection and union | |
area_inter, _ = np.histogram(intersection, bins=nbins, range=(mini, maxi)) | |
area_pred, _ = np.histogram(predict, bins=nbins, range=(mini, maxi)) | |
area_lab, _ = np.histogram(target, bins=nbins, range=(mini, maxi)) | |
area_union = area_pred + area_lab - area_inter | |
assert (area_inter <= area_union).all(), \ | |
"Intersection area should be smaller than Union area" | |
return area_inter, area_union | |
# ref https://github.com/CSAILVision/sceneparsing/blob/master/evaluationCode/utils_eval.py | |
def pixel_accuracy(im_pred, im_lab): | |
im_pred = np.asarray(im_pred) | |
im_lab = np.asarray(im_lab) | |
# Remove classes from unlabeled pixels in gt image. | |
# We should not penalize detections in unlabeled portions of the image. | |
pixel_labeled = np.sum(im_lab > 0) | |
pixel_correct = np.sum((im_pred == im_lab) * (im_lab > 0)) | |
# pixel_accuracy = 1.0 * pixel_correct / pixel_labeled | |
return pixel_correct, pixel_labeled | |
def intersection_and_union(im_pred, im_lab, num_class): | |
im_pred = np.asarray(im_pred) | |
im_lab = np.asarray(im_lab) | |
# Remove classes from unlabeled pixels in gt image. | |
im_pred = im_pred * (im_lab > 0) | |
# Compute area intersection: | |
intersection = im_pred * (im_pred == im_lab) | |
area_inter, _ = np.histogram(intersection, bins=num_class - 1, | |
range=(1, num_class - 1)) | |
# Compute area union: | |
area_pred, _ = np.histogram(im_pred, bins=num_class - 1, | |
range=(1, num_class - 1)) | |
area_lab, _ = np.histogram(im_lab, bins=num_class - 1, | |
range=(1, num_class - 1)) | |
area_union = area_pred + area_lab - area_inter | |
return area_inter, area_union | |