Spaces:
Sleeping
Sleeping
Update generic.py
Browse files- generic.py +25 -33
generic.py
CHANGED
@@ -88,50 +88,42 @@ class ModelUsage:
|
|
88 |
return self.output
|
89 |
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
img = cv2.imread(image_file_path)
|
95 |
mask = torch.zeros(img.shape[0], img.shape[1])
|
96 |
-
for index in range(len(
|
97 |
[x, y, w, h] = model_lrp.bboxes[0][index]
|
98 |
curr_score_tensor = mask[int(y):int(h), int(x):int(w)]
|
99 |
-
new_score_tensor = torch.ones_like(curr_score_tensor) *
|
100 |
mask[int(y):int(h), int(x):int(w)] = torch.max(new_score_tensor, mask[int(y):int(h), int(x):int(w)])
|
101 |
mask = (mask - mask.min()) / (mask.max() - mask.min())
|
102 |
mask = mask.unsqueeze_(-1)
|
103 |
mask = mask.expand(img.shape)
|
104 |
img = img * mask.cpu().data.numpy()
|
|
|
105 |
cv2.imwrite(
|
106 |
'lxmert/lxmert/experiments/paper/new.jpg', img)
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
|
110 |
-
model_lrp = ModelUsage(use_lrp=True)
|
111 |
-
lrp = GeneratorOurs(model_lrp)
|
112 |
-
baselines = GeneratorBaselines(model_lrp)
|
113 |
-
vqa_answers = utils.get_data(VQA_URL)
|
114 |
|
115 |
-
image_ids = [
|
116 |
-
# giraffe
|
117 |
-
'COCO_val2014_000000185590',
|
118 |
-
# baseball
|
119 |
-
'COCO_val2014_000000127510',
|
120 |
-
# bath
|
121 |
-
'COCO_val2014_000000324266',
|
122 |
-
# frisbee
|
123 |
-
'COCO_val2014_000000200717'
|
124 |
-
]
|
125 |
-
|
126 |
-
test_questions_for_images = [
|
127 |
-
################## paper samples
|
128 |
-
# giraffe
|
129 |
-
"is the animal eating?",
|
130 |
-
# baseball
|
131 |
-
"did he catch the ball?",
|
132 |
-
# bath
|
133 |
-
"is the tub white ?",
|
134 |
-
# frisbee
|
135 |
-
"did the man just catch the frisbee?"
|
136 |
-
################## paper samples
|
137 |
-
]
|
|
|
88 |
return self.output
|
89 |
|
90 |
|
91 |
+
model_lrp = ModelUsage(use_lrp=True)
|
92 |
+
lrp = GeneratorOurs(model_lrp)
|
93 |
+
baselines = GeneratorBaselines(model_lrp)
|
94 |
+
vqa_answers = utils.get_data(VQA_URL)
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
def save_image_vis(image_file_path, question):
|
100 |
+
R_t_t, R_t_i = lrp.generate_ours((image_file_path, quewtion), use_lrp=False,
|
101 |
+
normalize_self_attention=True,
|
102 |
+
method_name="ours")
|
103 |
+
image_scores = R_t_i[0]
|
104 |
+
text_scores = R_t_t[0]
|
105 |
+
# bbox_scores = image_scores
|
106 |
+
_, top_bboxes_indices = image_scores.topk(k=1, dim=-1)
|
107 |
img = cv2.imread(image_file_path)
|
108 |
mask = torch.zeros(img.shape[0], img.shape[1])
|
109 |
+
for index in range(len(image_scores)):
|
110 |
[x, y, w, h] = model_lrp.bboxes[0][index]
|
111 |
curr_score_tensor = mask[int(y):int(h), int(x):int(w)]
|
112 |
+
new_score_tensor = torch.ones_like(curr_score_tensor) * image_scores[index].item()
|
113 |
mask[int(y):int(h), int(x):int(w)] = torch.max(new_score_tensor, mask[int(y):int(h), int(x):int(w)])
|
114 |
mask = (mask - mask.min()) / (mask.max() - mask.min())
|
115 |
mask = mask.unsqueeze_(-1)
|
116 |
mask = mask.expand(img.shape)
|
117 |
img = img * mask.cpu().data.numpy()
|
118 |
+
# img = Image.fromarray(np.uint8(img)).convert('RGB')
|
119 |
cv2.imwrite(
|
120 |
'lxmert/lxmert/experiments/paper/new.jpg', img)
|
121 |
+
text_scores = (text_scores - text_scores.min()) / (text_scores.max() - text_scores.min())
|
122 |
+
vis_data_records = [visualization.VisualizationDataRecord(text_scores, 0, 0, 0, 0, 0, model_lrp.question_tokens, 1)]
|
123 |
+
html1 = visualization.visualize_text(vis_data_records)
|
124 |
+
return html1.data
|
125 |
+
|
126 |
+
|
127 |
|
128 |
|
|
|
|
|
|
|
|
|
129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|