Spaces:
Sleeping
Sleeping
Delete lxmert/run
Browse files- lxmert/run/README.md +0 -49
- lxmert/run/gqa_finetune.bash +0 -17
- lxmert/run/gqa_test.bash +0 -15
- lxmert/run/lxmert_pretrain.bash +0 -21
- lxmert/run/nlvr2_finetune.bash +0 -18
- lxmert/run/nlvr2_test.bash +0 -14
- lxmert/run/vqa_finetune.bash +0 -17
- lxmert/run/vqa_test.bash +0 -16
lxmert/run/README.md
DELETED
@@ -1,49 +0,0 @@
|
|
1 |
-
# Running Script Arguments
|
2 |
-
|
3 |
-
```
|
4 |
-
Data Splits:
|
5 |
-
--train [str,str,...]: use the splits (separated by comma) in training.
|
6 |
-
--valid [str,str,...]: use the splits (separated by comma) in validation.
|
7 |
-
--test [str,str,...]: use the splits (separated by comma) in testing.
|
8 |
-
Model Architecture:
|
9 |
-
--llayers [int]: number of layers in language encoder.
|
10 |
-
--xlayers [int]: number of layers in cross-modality encoder.
|
11 |
-
--rlayers [int]: number of layers in object relationship encoder.
|
12 |
-
Load Weights:
|
13 |
-
--load [str='path/to/saved_model']: load fine-tuned model path/to/saved_model.pth.
|
14 |
-
--loadLXMERT [str='path/to/saved_model']: load pre-trained model without answer heads from path/to/saved_model_LXRT.pth.
|
15 |
-
--loadLXMERTQA [str='path/to/saved_model']: load pre-trained model with answer head path/to/saved_model_LXRT.pth.
|
16 |
-
--fromScratch: If none of the above loading parameters are set, the default mode would
|
17 |
-
load the pre-trained BERT weights.
|
18 |
-
As we promised to EMNLP reviewers, the language encoder would be re-initialized with this one-line argument to test the performance without BERT weights.
|
19 |
-
Training Hyper Parameters:
|
20 |
-
--batchSize [int]: batch size.
|
21 |
-
--optim [str]: optimizers.
|
22 |
-
--lr [float]: peak learning rate.
|
23 |
-
--epochs [int]: training epochs.
|
24 |
-
Debugging:
|
25 |
-
--tiny: Load 512 images for each data split. (Note: number of images might be changed due to dataset specification)
|
26 |
-
--fast: Load 5000 images for each data split. (Note: number of images might be changed due to dataset specification)
|
27 |
-
```
|
28 |
-
|
29 |
-
# Pre-training-Specific Arguments
|
30 |
-
```
|
31 |
-
Pre-training Tasks:
|
32 |
-
--taskMaskLM: use the masked language model task.
|
33 |
-
--taskObjPredict: use the masked object prediction task.
|
34 |
-
--taskMatched: use the cross-modality matched task.
|
35 |
-
--taskQA: use the image QA task.
|
36 |
-
Visual Pre-training Losses (Tasks):
|
37 |
-
--visualLosses [str,str,...]: The sub-tasks in pre-training visual modality. Each one is from 'obj,attr,feat'.
|
38 |
-
obj: detected-object-label classification.
|
39 |
-
attr: detected-object-attribute classification.
|
40 |
-
feat: RoI-feature regression.
|
41 |
-
Mask Rate in Pre-training:
|
42 |
-
--wordMaskRate [float]: The prob of masking a word.
|
43 |
-
--objMaskRate [float]: The prob of masking an object.
|
44 |
-
Initialization:
|
45 |
-
--fromScratch: The default mode would load the pre-trained BERT weights into the model.
|
46 |
-
As we promised to EMNLP reviewers, this option would re-initialize the language encoder.
|
47 |
-
```
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lxmert/run/gqa_finetune.bash
DELETED
@@ -1,17 +0,0 @@
|
|
1 |
-
# The name of this experiment.
|
2 |
-
name=$2
|
3 |
-
|
4 |
-
# Save logs and models under snap/gqa; make backup.
|
5 |
-
output=snap/gqa/$name
|
6 |
-
mkdir -p $output/src
|
7 |
-
cp -r src/* $output/src/
|
8 |
-
cp $0 $output/run.bash
|
9 |
-
|
10 |
-
# See Readme.md for option details.
|
11 |
-
CUDA_VISIBLE_DEVICES=$1 PYTHONPATH=$PYTHONPATH:./src \
|
12 |
-
python src/tasks/gqa.py \
|
13 |
-
--train train,valid --valid testdev \
|
14 |
-
--llayers 9 --xlayers 5 --rlayers 5 \
|
15 |
-
--loadLXMERTQA snap/pretrained/model \
|
16 |
-
--batchSize 32 --optim bert --lr 1e-5 --epochs 4 \
|
17 |
-
--tqdm --output $output ${@:3}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lxmert/run/gqa_test.bash
DELETED
@@ -1,15 +0,0 @@
|
|
1 |
-
# The name of this experiment.
|
2 |
-
name=$2
|
3 |
-
|
4 |
-
# Save logs and models under snap/gqa; make backup.
|
5 |
-
output=snap/gqa/$name
|
6 |
-
mkdir -p $output/src
|
7 |
-
cp -r src/* $output/src/
|
8 |
-
cp $0 $output/run.bash
|
9 |
-
|
10 |
-
# See Readme.md for option details.
|
11 |
-
CUDA_VISIBLE_DEVICES=$1 PYTHONPATH=$PYTHONPATH:./src \
|
12 |
-
python src/tasks/gqa.py \
|
13 |
-
--tiny --train train --valid "" \
|
14 |
-
--llayers 9 --xlayers 5 --rlayers 5 \
|
15 |
-
--tqdm --output $output ${@:3}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lxmert/run/lxmert_pretrain.bash
DELETED
@@ -1,21 +0,0 @@
|
|
1 |
-
# The name of experiment
|
2 |
-
name=lxmert
|
3 |
-
|
4 |
-
# Create dirs and make backup
|
5 |
-
output=snap/pretrain/$name
|
6 |
-
mkdir -p $output/src
|
7 |
-
cp -r src/* $output/src/
|
8 |
-
cp $0 $output/run.bash
|
9 |
-
|
10 |
-
# Pre-training
|
11 |
-
CUDA_VISIBLE_DEVICES=$1 PYTHONPATH=$PYTHONPATH:./src \
|
12 |
-
python src/pretrain/lxmert_pretrain.py \
|
13 |
-
--taskMaskLM --taskObjPredict --taskMatched --taskQA \
|
14 |
-
--visualLosses obj,attr,feat \
|
15 |
-
--wordMaskRate 0.15 --objMaskRate 0.15 \
|
16 |
-
--train mscoco_train,mscoco_nominival,vgnococo --valid mscoco_minival \
|
17 |
-
--llayers 9 --xlayers 5 --rlayers 5 \
|
18 |
-
--fromScratch \
|
19 |
-
--batchSize 256 --optim bert --lr 1e-4 --epochs 20 \
|
20 |
-
--tqdm --output $output ${@:2}
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lxmert/run/nlvr2_finetune.bash
DELETED
@@ -1,18 +0,0 @@
|
|
1 |
-
# The name of this experiment.
|
2 |
-
name=$2
|
3 |
-
|
4 |
-
# Save logs and models under snap/nlvr2; Make backup.
|
5 |
-
output=snap/nlvr2/$name
|
6 |
-
mkdir -p $output/src
|
7 |
-
cp -r src/* $output/src/
|
8 |
-
cp $0 $output/run.bash
|
9 |
-
|
10 |
-
# See run/Readme.md for option details.
|
11 |
-
CUDA_VISIBLE_DEVICES=$1 PYTHONPATH=$PYTHONPATH:./src \
|
12 |
-
python src/tasks/nlvr2.py \
|
13 |
-
--train train --valid valid \
|
14 |
-
--llayers 9 --xlayers 5 --rlayers 5 \
|
15 |
-
--loadLXMERT snap/pretrained/model \
|
16 |
-
--batchSize 32 --optim bert --lr 5e-5 --epochs 4 \
|
17 |
-
--tqdm --output $output ${@:3}
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lxmert/run/nlvr2_test.bash
DELETED
@@ -1,14 +0,0 @@
|
|
1 |
-
# The name of this experiment.
|
2 |
-
name=$2
|
3 |
-
|
4 |
-
# Save logs and models under snap/nlvr2; make backup.
|
5 |
-
output=snap/nlvr2/$name
|
6 |
-
mkdir -p $output/src
|
7 |
-
cp -r src/* $output/src/
|
8 |
-
cp $0 $output/run.bash
|
9 |
-
|
10 |
-
# See Readme.md for option details.
|
11 |
-
CUDA_VISIBLE_DEVICES=$1 PYTHONPATH=$PYTHONPATH:./src \
|
12 |
-
python src/tasks/nlvr2.py \
|
13 |
-
--tiny --llayers 9 --xlayers 5 --rlayers 5 \
|
14 |
-
--tqdm --output $output ${@:3}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lxmert/run/vqa_finetune.bash
DELETED
@@ -1,17 +0,0 @@
|
|
1 |
-
# The name of this experiment.
|
2 |
-
name=$2
|
3 |
-
|
4 |
-
# Save logs and models under snap/vqa; make backup.
|
5 |
-
output=snap/vqa/$name
|
6 |
-
mkdir -p $output/src
|
7 |
-
cp -r src/* $output/src/
|
8 |
-
cp $0 $output/run.bash
|
9 |
-
|
10 |
-
# See Readme.md for option details.
|
11 |
-
CUDA_VISIBLE_DEVICES=$1 PYTHONPATH=$PYTHONPATH:./src \
|
12 |
-
python src/tasks/vqa.py \
|
13 |
-
--train train,nominival --valid minival \
|
14 |
-
--llayers 9 --xlayers 5 --rlayers 5 \
|
15 |
-
--loadLXMERTQA snap/pretrained/model \
|
16 |
-
--batchSize 32 --optim bert --lr 5e-5 --epochs 4 \
|
17 |
-
--tqdm --output $output ${@:3}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lxmert/run/vqa_test.bash
DELETED
@@ -1,16 +0,0 @@
|
|
1 |
-
# The name of this experiment.
|
2 |
-
name=$2
|
3 |
-
|
4 |
-
# Save logs and models under snap/vqa; make backup.
|
5 |
-
output=snap/vqa/$name
|
6 |
-
mkdir -p $output/src
|
7 |
-
cp -r src/* $output/src/
|
8 |
-
cp $0 $output/run.bash
|
9 |
-
|
10 |
-
# See Readme.md for option details.
|
11 |
-
CUDA_VISIBLE_DEVICES=$1 PYTHONPATH=$PYTHONPATH:./src \
|
12 |
-
python src/tasks/vqa.py \
|
13 |
-
--tiny --train train --valid "" \
|
14 |
-
--llayers 9 --xlayers 5 --rlayers 5 \
|
15 |
-
--batchSize 32 --optim bert --lr 5e-5 --epochs 4 \
|
16 |
-
--tqdm --output $output ${@:3}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|