explain-LXMERT / lxmert /src /pretrain /lxmert_pretrain.py
WwYc's picture
Upload 61 files
08d7644 verified
raw
history blame
15.6 kB
# coding=utf-8
# Copyleft 2019 project LXRT.
import collections
import os
import random
from tqdm import tqdm
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from param import args
from pretrain.lxmert_data import InputExample, LXMERTDataset, LXMERTTorchDataset, LXMERTEvaluator
from lxrt.entry import set_visual_config
from lxrt.tokenization import BertTokenizer
from lxrt.modeling import LXRTPretraining
DataTuple = collections.namedtuple("DataTuple", 'dataset torchdset loader evaluator')
def get_tuple(splits: str, bs: int, shuffle=False, drop_last=False, topk=-1) -> DataTuple:
# Decide which QA datasets would be used in pre-training.
# Options: vqa, gqa, visual7w
# Note: visual7w is a part of vgqa, we take the name here.
qa_sets = args.qa_sets
if qa_sets is not None:
qa_sets = set(qa_set.lower().strip() for qa_set in qa_sets.split(","))
# Build dataset, data loader, and evaluator.
dset = LXMERTDataset(splits, qa_sets=qa_sets)
tset = LXMERTTorchDataset(dset, topk)
data_loader = DataLoader(
tset, batch_size=bs,
shuffle=shuffle, num_workers=args.num_workers,
collate_fn=lambda x: x,
drop_last=drop_last, pin_memory=True
)
evaluator = LXMERTEvaluator(dset)
print()
return DataTuple(dataset=dset, torchdset=tset, loader=data_loader, evaluator=evaluator)
train_tuple = get_tuple(args.train, args.batch_size, shuffle=True, drop_last=True)
valid_batch_size = 2048 if args.multiGPU else 512
valid_tuple = get_tuple(args.valid, valid_batch_size, shuffle=False, drop_last=False, topk=5000)
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self,
input_ids, input_mask, segment_ids, lm_label_ids,
visual_feats, obj_labels,
is_matched, ans):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.lm_label_ids = lm_label_ids
self.visual_feats = visual_feats
self.obj_labels = obj_labels
self.is_matched = is_matched
self.ans = ans
def random_word(tokens, tokenizer):
"""
Masking some random tokens for Language Model task with probabilities as in the original BERT paper.
:param tokens: list of str, tokenized sentence.
:param tokenizer: Tokenizer, object used for tokenization (we need it's vocab here)
:return: (list of str, list of int), masked tokens and related labels for LM prediction
"""
output_label = []
for i, token in enumerate(tokens):
prob = random.random()
# mask token with probability
ratio = args.word_mask_rate
if prob < ratio:
prob /= ratio
# 80% randomly change token to mask token
if prob < 0.8:
tokens[i] = "[MASK]"
# 10% randomly change token to random token
elif prob < 0.9:
tokens[i] = random.choice(list(tokenizer.vocab.items()))[0]
# -> rest 10% randomly keep current token
# append current token to output (we will predict these later)
try:
output_label.append(tokenizer.vocab[token])
except KeyError:
# For unknown words (should not occur with BPE vocab)
output_label.append(tokenizer.vocab["[UNK]"])
else:
# no masking token (will be ignored by loss function later)
output_label.append(-1)
return tokens, output_label
def random_feat(feats):
mask_feats = feats.copy()
feat_mask = np.zeros(len(feats), dtype=np.float32)
for i in range(len(feats)):
prob = random.random()
# mask token with probability
if prob < args.obj_mask_rate:
prob /= args.obj_mask_rate
# 80% randomly change token to zero feat
if prob < 0.8:
mask_feats[i, :] = 0.
# 10% randomly change token to random feat
elif prob < 0.9:
mask_feats[i, :] = train_tuple.torchdset.random_feat()
# -> rest 10% randomly keep current feat
# Need to predict this feat
feat_mask[i] = 1.
return mask_feats, feat_mask
def convert_example_to_features(example: InputExample, max_seq_length, tokenizer)->InputFeatures:
"""
Convert a raw sample (pair of sentences as tokenized strings) into a proper training sample with
IDs, LM labels, input_mask, CLS and SEP tokens etc.
:param example: InputExample, containing sentence input as strings and is_next label
:param max_seq_length: int, maximum length of sequence.
:param tokenizer: Tokenizer
:return: InputFeatures, containing all inputs and labels of one sample as IDs (as used for model training)
"""
tokens = tokenizer.tokenize(example.sent.strip())
# Account for [CLS] and [SEP] with "- 2"
if len(tokens) > max_seq_length - 2:
tokens = tokens[:(max_seq_length - 2)]
# Ge random words
masked_tokens, masked_label = random_word(tokens, tokenizer)
# concatenate lm labels and account for CLS, SEP, SEP
masked_tokens = ['[CLS]'] + masked_tokens + ['[SEP]']
input_ids = tokenizer.convert_tokens_to_ids(masked_tokens)
# Mask & Segment Word
lm_label_ids = ([-1] + masked_label + [-1])
input_mask = [1] * len(input_ids)
segment_ids = [0] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
lm_label_ids.append(-1)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
assert len(lm_label_ids) == max_seq_length
feat, boxes = example.visual_feats
obj_labels, obj_confs = example.obj_labels
attr_labels, attr_confs = example.attr_labels
# Mask Image Features:
masked_feat, feat_mask = random_feat(feat)
# QA answer label
if example.label is None or len(example.label) == 0 or example.is_matched != 1:
# 1. No label 2. Label is pruned 3. unmatched visual + language pair
ans = -1
else:
keys, values = zip(*example.label.items())
if len(keys) == 1:
ans = keys[0]
else:
value_sum = sum(values)
prob = [value / value_sum for value in values]
choice = np.random.multinomial(1, prob).argmax()
ans = keys[choice]
features = InputFeatures(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
lm_label_ids=lm_label_ids,
visual_feats=(masked_feat, boxes),
obj_labels={
'obj': (obj_labels, obj_confs),
'attr': (attr_labels, attr_confs),
'feat': (feat, feat_mask),
},
is_matched=example.is_matched,
ans=ans,
)
return features
LOSSES_NAME = ('Mask_LM', 'Matched', 'Obj', 'Attr', 'Feat', 'QA')
class LXMERT:
def __init__(self, max_seq_length):
super().__init__()
self.max_seq_length = max_seq_length
self.tokenizer = BertTokenizer.from_pretrained(
"bert-base-uncased",
do_lower_case=True
)
# Build model
set_visual_config(args)
self.model = LXRTPretraining.from_pretrained(
"bert-base-uncased",
task_mask_lm=args.task_mask_lm,
task_obj_predict=args.task_obj_predict,
task_matched=args.task_matched,
task_qa=args.task_qa,
visual_losses=args.visual_losses,
num_answers=train_tuple.dataset.answer_table.num_answers
)
# Weight initialization and loading
if args.from_scratch:
print("Train from Scratch: re-initialize all BERT weights.")
self.model.apply(self.model.init_bert_weights)
if args.load is not None:
self.load(args.load)
if args.load_lxmert is not None:
# Load lxmert would not load the answer head.
self.load_lxmert(args.load_lxmert)
# GPU Options
self.model = self.model.cuda()
if args.multiGPU:
self.model = nn.DataParallel(self.model)
def forward(self, examples):
train_features = [convert_example_to_features(example, self.max_seq_length, self.tokenizer)
for example in examples]
# language Inputs
input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long).cuda()
input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long).cuda()
segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long).cuda()
# Visual Inputs
feats = torch.from_numpy(np.stack([f.visual_feats[0] for f in train_features])).cuda()
pos = torch.from_numpy(np.stack([f.visual_feats[1] for f in train_features])).cuda()
# Language Prediction
lm_labels = torch.tensor([f.lm_label_ids for f in train_features], dtype=torch.long).cuda()
# Visual Prediction
obj_labels = {}
for key in ('obj', 'attr', 'feat'):
visn_labels = torch.from_numpy(np.stack([f.obj_labels[key][0] for f in train_features])).cuda()
visn_mask = torch.from_numpy(np.stack([f.obj_labels[key][1] for f in train_features])).cuda()
assert visn_labels.size(0) == visn_mask.size(0) and visn_labels.size(1) == visn_mask.size(1)
obj_labels[key] = (visn_labels, visn_mask)
# Joint Prediction
matched_labels = torch.tensor([f.is_matched for f in train_features], dtype=torch.long).cuda()
ans = torch.from_numpy(np.stack([f.ans for f in train_features])).cuda()
"""
forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None,
visual_feats=None, pos=None, obj_labels=None, matched_label=None, ans=None):
"""
loss, losses, ans_logit = self.model(
input_ids, segment_ids, input_mask, lm_labels,
feats, pos, obj_labels, matched_labels, ans
)
return loss, losses.detach().cpu(), ans_logit
def train_batch(self, optim, batch):
optim.zero_grad()
loss, losses, ans_logit = self.forward(batch)
if args.multiGPU:
loss = loss.mean()
losses = losses.mean(0)
loss.backward()
nn.utils.clip_grad_norm_(self.model.parameters(), 1.)
optim.step()
return loss.item(), losses.cpu().numpy(), ans_logit
def valid_batch(self, batch):
with torch.no_grad():
loss, losses, ans_logit = self.forward(batch)
if args.multiGPU:
loss = loss.mean()
losses = losses.mean(0)
return loss.item(), losses.cpu().numpy(), ans_logit
def train(self, train_tuple: DataTuple, eval_tuple: DataTuple):
train_ld = train_tuple.loader
# Optimizer
from lxrt.optimization import BertAdam
batch_per_epoch = len(train_ld)
t_total = int(batch_per_epoch * args.epochs)
warmup_ratio = 0.05
warmup_iters = int(t_total * warmup_ratio)
print("Batch per epoch: %d" % batch_per_epoch)
print("Total Iters: %d" % t_total)
print("Warm up Iters: %d" % warmup_iters)
optim = BertAdam(self.model.parameters(), lr=args.lr, warmup=warmup_ratio, t_total=t_total)
# Train
best_eval_loss = 9595.
for epoch in range(args.epochs):
# Train
self.model.train()
total_loss = 0.
total_losses = 0.
uid2ans = {}
for batch in tqdm(train_ld, total=len(train_ld)):
loss, losses, logit = self.train_batch(optim, batch)
total_loss += loss
total_losses += losses
if args.task_qa:
score, label = logit.max(1)
for datum, l in zip(batch, label.cpu().numpy()):
uid = datum.uid
ans = train_tuple.dataset.answer_table.id2ans(l)
uid2ans[uid] = ans
print("The training loss for Epoch %d is %0.4f" % (epoch, total_loss / batch_per_epoch))
losses_str = "The losses are "
for name, loss in zip(LOSSES_NAME, total_losses):
losses_str += "%s: %0.4f " % (name, loss / batch_per_epoch)
print(losses_str)
if args.task_qa:
train_tuple.evaluator.evaluate(uid2ans, pprint=True)
# Eval
avg_eval_loss = self.evaluate_epoch(eval_tuple, iters=-1)
# Save
if avg_eval_loss < best_eval_loss:
best_eval_loss = avg_eval_loss
self.save("BEST_EVAL_LOSS")
self.save("Epoch%02d" % (epoch+1))
def evaluate_epoch(self, eval_tuple: DataTuple, iters: int=-1):
self.model.eval()
eval_ld = eval_tuple.loader
total_loss = 0.
total_losses = 0.
uid2ans = {}
for i, batch in enumerate(eval_ld):
loss, losses, logit = self.valid_batch(batch)
total_loss += loss
total_losses += losses
if args.task_qa:
score, label = logit.max(1)
for datum, l in zip(batch, label.cpu().numpy()):
uid = datum.uid
ans = train_tuple.dataset.answer_table.id2ans(l)
uid2ans[uid] = ans
if i == iters:
break
print("The valid loss is %0.4f" % (total_loss / len(eval_ld)))
losses_str = "The losses are "
for name, loss in zip(LOSSES_NAME, total_losses / len(eval_ld)):
losses_str += "%s: %0.4f " % (name, loss)
print(losses_str)
if args.task_qa:
eval_tuple.evaluator.evaluate(uid2ans, pprint=True)
return total_loss / len(eval_ld)
def save(self, name):
torch.save(self.model.state_dict(),
os.path.join(args.output, "%s_LXRT.pth" % name))
def load(self, path):
print("Load BERT extractor from %s" % path)
state_dict = torch.load("%s_LXRT.pth" % path)
self.model.load_state_dict(state_dict)
def load_lxmert(self, path):
print("Load lxmert model from %s" % path)
state_dict = torch.load("%s_LXRT.pth" % path)
# Do not load any answer head
for key in list(state_dict.keys()):
if 'answer' in key:
state_dict.pop(key)
# Change Multi GPU to single GPU
new_state_dict = {}
for key, value in state_dict.items():
if key.startswith("module."):
new_state_dict[key[len("module."):]] = value
state_dict = new_state_dict
load_keys = set(state_dict.keys())
model_keys = set(self.model.state_dict().keys())
print()
print("Keys in loaded but not in model:")
for key in sorted(load_keys.difference(model_keys)):
print(key)
print()
print("Keys in model but not in loaded:")
for key in sorted(model_keys.difference(load_keys)):
print(key)
print()
self.model.load_state_dict(state_dict, strict=False)
if __name__ == "__main__":
lxmert = LXMERT(max_seq_length=20)
lxmert.train(train_tuple, valid_tuple)