File size: 15,616 Bytes
08d7644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
# coding=utf-8
# Copyleft 2019 project LXRT.

import collections
import os
import random

from tqdm import tqdm
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader

from param import args
from pretrain.lxmert_data import InputExample, LXMERTDataset, LXMERTTorchDataset, LXMERTEvaluator
from lxrt.entry import set_visual_config
from lxrt.tokenization import BertTokenizer
from lxrt.modeling import LXRTPretraining

DataTuple = collections.namedtuple("DataTuple", 'dataset torchdset loader evaluator')


def get_tuple(splits: str, bs: int, shuffle=False, drop_last=False, topk=-1) -> DataTuple:
    # Decide which QA datasets would be used in pre-training.
    # Options: vqa, gqa, visual7w
    # Note: visual7w is a part of vgqa, we take the name here.
    qa_sets = args.qa_sets
    if qa_sets is not None:
        qa_sets = set(qa_set.lower().strip() for qa_set in qa_sets.split(","))

    # Build dataset, data loader, and evaluator.
    dset = LXMERTDataset(splits, qa_sets=qa_sets)
    tset = LXMERTTorchDataset(dset, topk)
    data_loader = DataLoader(
        tset, batch_size=bs,
        shuffle=shuffle, num_workers=args.num_workers,
        collate_fn=lambda x: x,
        drop_last=drop_last, pin_memory=True
    )
    evaluator = LXMERTEvaluator(dset)
    print()

    return DataTuple(dataset=dset, torchdset=tset, loader=data_loader, evaluator=evaluator)


train_tuple = get_tuple(args.train, args.batch_size, shuffle=True, drop_last=True)
valid_batch_size = 2048 if args.multiGPU else 512
valid_tuple = get_tuple(args.valid, valid_batch_size, shuffle=False, drop_last=False, topk=5000)


class InputFeatures(object):
    """A single set of features of data."""

    def __init__(self,
                 input_ids, input_mask, segment_ids, lm_label_ids,
                 visual_feats, obj_labels,
                 is_matched, ans):
        self.input_ids = input_ids
        self.input_mask = input_mask
        self.segment_ids = segment_ids
        self.lm_label_ids = lm_label_ids

        self.visual_feats = visual_feats
        self.obj_labels = obj_labels

        self.is_matched = is_matched

        self.ans = ans


def random_word(tokens, tokenizer):
    """
    Masking some random tokens for Language Model task with probabilities as in the original BERT paper.
    :param tokens: list of str, tokenized sentence.
    :param tokenizer: Tokenizer, object used for tokenization (we need it's vocab here)
    :return: (list of str, list of int), masked tokens and related labels for LM prediction
    """
    output_label = []

    for i, token in enumerate(tokens):
        prob = random.random()
        # mask token with probability
        ratio = args.word_mask_rate
        if prob < ratio:
            prob /= ratio

            # 80% randomly change token to mask token
            if prob < 0.8:
                tokens[i] = "[MASK]"

            # 10% randomly change token to random token
            elif prob < 0.9:
                tokens[i] = random.choice(list(tokenizer.vocab.items()))[0]

            # -> rest 10% randomly keep current token

            # append current token to output (we will predict these later)
            try:
                output_label.append(tokenizer.vocab[token])
            except KeyError:
                # For unknown words (should not occur with BPE vocab)
                output_label.append(tokenizer.vocab["[UNK]"])
        else:
            # no masking token (will be ignored by loss function later)
            output_label.append(-1)

    return tokens, output_label


def random_feat(feats):
    mask_feats = feats.copy()
    feat_mask = np.zeros(len(feats), dtype=np.float32)
    for i in range(len(feats)):
        prob = random.random()
        # mask token with probability
        if prob < args.obj_mask_rate:
            prob /= args.obj_mask_rate

            # 80% randomly change token to zero feat
            if prob < 0.8:
                mask_feats[i, :] = 0.

            # 10% randomly change token to random feat
            elif prob < 0.9:
                mask_feats[i, :] = train_tuple.torchdset.random_feat()
            # -> rest 10% randomly keep current feat

            # Need to predict this feat
            feat_mask[i] = 1.

    return mask_feats, feat_mask


def convert_example_to_features(example: InputExample, max_seq_length, tokenizer)->InputFeatures:
    """
    Convert a raw sample (pair of sentences as tokenized strings) into a proper training sample with
    IDs, LM labels, input_mask, CLS and SEP tokens etc.
    :param example: InputExample, containing sentence input as strings and is_next label
    :param max_seq_length: int, maximum length of sequence.
    :param tokenizer: Tokenizer
    :return: InputFeatures, containing all inputs and labels of one sample as IDs (as used for model training)
    """
    tokens = tokenizer.tokenize(example.sent.strip())

    # Account for [CLS] and [SEP] with "- 2"
    if len(tokens) > max_seq_length - 2:
        tokens = tokens[:(max_seq_length - 2)]

    # Ge random words
    masked_tokens, masked_label = random_word(tokens, tokenizer)

    # concatenate lm labels and account for CLS, SEP, SEP
    masked_tokens = ['[CLS]'] + masked_tokens + ['[SEP]']
    input_ids = tokenizer.convert_tokens_to_ids(masked_tokens)

    # Mask & Segment Word
    lm_label_ids = ([-1] + masked_label + [-1])
    input_mask = [1] * len(input_ids)
    segment_ids = [0] * len(input_ids)

    # Zero-pad up to the sequence length.
    while len(input_ids) < max_seq_length:
        input_ids.append(0)
        input_mask.append(0)
        segment_ids.append(0)
        lm_label_ids.append(-1)

    assert len(input_ids) == max_seq_length
    assert len(input_mask) == max_seq_length
    assert len(segment_ids) == max_seq_length
    assert len(lm_label_ids) == max_seq_length

    feat, boxes = example.visual_feats
    obj_labels, obj_confs = example.obj_labels
    attr_labels, attr_confs = example.attr_labels

    # Mask Image Features:
    masked_feat, feat_mask = random_feat(feat)

    # QA answer label
    if example.label is None or len(example.label) == 0 or example.is_matched != 1:
        # 1. No label 2. Label is pruned 3. unmatched visual + language pair
        ans = -1
    else:
        keys, values = zip(*example.label.items())
        if len(keys) == 1:
            ans = keys[0]
        else:
            value_sum = sum(values)
            prob = [value / value_sum for value in values]
            choice = np.random.multinomial(1, prob).argmax()
            ans = keys[choice]

    features = InputFeatures(
        input_ids=input_ids,
        input_mask=input_mask,
        segment_ids=segment_ids,
        lm_label_ids=lm_label_ids,
        visual_feats=(masked_feat, boxes),
        obj_labels={
            'obj': (obj_labels, obj_confs),
            'attr': (attr_labels, attr_confs),
            'feat': (feat, feat_mask),
        },
        is_matched=example.is_matched,
        ans=ans,
    )
    return features


LOSSES_NAME = ('Mask_LM', 'Matched', 'Obj', 'Attr', 'Feat', 'QA')


class LXMERT:
    def __init__(self, max_seq_length):
        super().__init__()
        self.max_seq_length = max_seq_length

        self.tokenizer = BertTokenizer.from_pretrained(
            "bert-base-uncased",
            do_lower_case=True
        )

        # Build model
        set_visual_config(args)
        self.model = LXRTPretraining.from_pretrained(
            "bert-base-uncased",
            task_mask_lm=args.task_mask_lm,
            task_obj_predict=args.task_obj_predict,
            task_matched=args.task_matched,
            task_qa=args.task_qa,
            visual_losses=args.visual_losses,
            num_answers=train_tuple.dataset.answer_table.num_answers
        )

        # Weight initialization and loading
        if args.from_scratch:
            print("Train from Scratch: re-initialize all BERT weights.")
            self.model.apply(self.model.init_bert_weights)
        if args.load is not None:
            self.load(args.load)
        if args.load_lxmert is not None:
            # Load lxmert would not load the answer head.
            self.load_lxmert(args.load_lxmert)

        # GPU Options
        self.model = self.model.cuda()
        if args.multiGPU:
            self.model = nn.DataParallel(self.model)

    def forward(self, examples):
        train_features = [convert_example_to_features(example, self.max_seq_length, self.tokenizer)
                          for example in examples]

        # language Inputs
        input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long).cuda()
        input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long).cuda()
        segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long).cuda()

        # Visual Inputs
        feats = torch.from_numpy(np.stack([f.visual_feats[0] for f in train_features])).cuda()
        pos = torch.from_numpy(np.stack([f.visual_feats[1] for f in train_features])).cuda()

        # Language Prediction
        lm_labels = torch.tensor([f.lm_label_ids for f in train_features], dtype=torch.long).cuda()

        # Visual Prediction
        obj_labels = {}
        for key in ('obj', 'attr', 'feat'):
            visn_labels = torch.from_numpy(np.stack([f.obj_labels[key][0] for f in train_features])).cuda()
            visn_mask = torch.from_numpy(np.stack([f.obj_labels[key][1] for f in train_features])).cuda()
            assert visn_labels.size(0) == visn_mask.size(0) and visn_labels.size(1) == visn_mask.size(1)
            obj_labels[key] = (visn_labels, visn_mask)

        # Joint Prediction
        matched_labels = torch.tensor([f.is_matched for f in train_features], dtype=torch.long).cuda()
        ans = torch.from_numpy(np.stack([f.ans for f in train_features])).cuda()

        """
        forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None,
                visual_feats=None, pos=None, obj_labels=None, matched_label=None, ans=None):
        """
        loss, losses, ans_logit = self.model(
            input_ids, segment_ids, input_mask, lm_labels,
            feats, pos, obj_labels, matched_labels, ans
        )
        return loss, losses.detach().cpu(), ans_logit

    def train_batch(self, optim, batch):
        optim.zero_grad()
        loss, losses, ans_logit = self.forward(batch)
        if args.multiGPU:
            loss = loss.mean()
            losses = losses.mean(0)
        loss.backward()
        nn.utils.clip_grad_norm_(self.model.parameters(), 1.)
        optim.step()

        return loss.item(), losses.cpu().numpy(), ans_logit

    def valid_batch(self, batch):
        with torch.no_grad():
            loss, losses, ans_logit = self.forward(batch)
            if args.multiGPU:
                loss = loss.mean()
                losses = losses.mean(0)
        return loss.item(), losses.cpu().numpy(), ans_logit

    def train(self, train_tuple: DataTuple, eval_tuple: DataTuple):
        train_ld = train_tuple.loader

        # Optimizer
        from lxrt.optimization import BertAdam
        batch_per_epoch = len(train_ld)
        t_total = int(batch_per_epoch * args.epochs)
        warmup_ratio = 0.05
        warmup_iters = int(t_total * warmup_ratio)
        print("Batch per epoch: %d" % batch_per_epoch)
        print("Total Iters: %d" % t_total)
        print("Warm up Iters: %d" % warmup_iters)
        optim = BertAdam(self.model.parameters(), lr=args.lr, warmup=warmup_ratio, t_total=t_total)

        # Train
        best_eval_loss = 9595.
        for epoch in range(args.epochs):
            # Train
            self.model.train()
            total_loss = 0.
            total_losses = 0.
            uid2ans = {}
            for batch in tqdm(train_ld, total=len(train_ld)):
                loss, losses, logit = self.train_batch(optim, batch)
                total_loss += loss
                total_losses += losses

                if args.task_qa:
                    score, label = logit.max(1)
                    for datum, l in zip(batch, label.cpu().numpy()):
                        uid = datum.uid
                        ans = train_tuple.dataset.answer_table.id2ans(l)
                        uid2ans[uid] = ans

            print("The training loss for Epoch %d is %0.4f" % (epoch, total_loss / batch_per_epoch))
            losses_str = "The losses are "
            for name, loss in zip(LOSSES_NAME, total_losses):
                losses_str += "%s: %0.4f " % (name, loss / batch_per_epoch)
            print(losses_str)
            if args.task_qa:
                train_tuple.evaluator.evaluate(uid2ans, pprint=True)

            # Eval
            avg_eval_loss = self.evaluate_epoch(eval_tuple, iters=-1)

            # Save
            if avg_eval_loss < best_eval_loss:
                best_eval_loss = avg_eval_loss
                self.save("BEST_EVAL_LOSS")
            self.save("Epoch%02d" % (epoch+1))

    def evaluate_epoch(self, eval_tuple: DataTuple, iters: int=-1):
        self.model.eval()
        eval_ld = eval_tuple.loader
        total_loss = 0.
        total_losses = 0.
        uid2ans = {}
        for i, batch in enumerate(eval_ld):
            loss, losses, logit = self.valid_batch(batch)
            total_loss += loss
            total_losses += losses
            if args.task_qa:
                score, label = logit.max(1)
                for datum, l in zip(batch, label.cpu().numpy()):
                    uid = datum.uid
                    ans = train_tuple.dataset.answer_table.id2ans(l)
                    uid2ans[uid] = ans
            if i == iters:
                break

        print("The valid loss is %0.4f" % (total_loss / len(eval_ld)))
        losses_str = "The losses are "
        for name, loss in zip(LOSSES_NAME, total_losses / len(eval_ld)):
            losses_str += "%s: %0.4f " % (name, loss)
        print(losses_str)

        if args.task_qa:
            eval_tuple.evaluator.evaluate(uid2ans, pprint=True)

        return total_loss / len(eval_ld)

    def save(self, name):
        torch.save(self.model.state_dict(),
                   os.path.join(args.output, "%s_LXRT.pth" % name))

    def load(self, path):
        print("Load BERT extractor from %s" % path)
        state_dict = torch.load("%s_LXRT.pth" % path)
        self.model.load_state_dict(state_dict)

    def load_lxmert(self, path):
        print("Load lxmert model from %s" % path)
        state_dict = torch.load("%s_LXRT.pth" % path)

        # Do not load any answer head
        for key in list(state_dict.keys()):
            if 'answer' in key:
                state_dict.pop(key)

        # Change Multi GPU to single GPU
        new_state_dict = {}
        for key, value in state_dict.items():
            if key.startswith("module."):
                new_state_dict[key[len("module."):]] = value
        state_dict = new_state_dict

        load_keys = set(state_dict.keys())
        model_keys = set(self.model.state_dict().keys())
        print()
        print("Keys in loaded but not in model:")
        for key in sorted(load_keys.difference(model_keys)):
            print(key)
        print()
        print("Keys in model but not in loaded:")
        for key in sorted(model_keys.difference(load_keys)):
            print(key)
        print()

        self.model.load_state_dict(state_dict, strict=False)


if __name__ == "__main__":

    lxmert = LXMERT(max_seq_length=20)


    lxmert.train(train_tuple, valid_tuple)