Spaces:
Sleeping
Sleeping
File size: 15,616 Bytes
08d7644 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
# coding=utf-8
# Copyleft 2019 project LXRT.
import collections
import os
import random
from tqdm import tqdm
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from param import args
from pretrain.lxmert_data import InputExample, LXMERTDataset, LXMERTTorchDataset, LXMERTEvaluator
from lxrt.entry import set_visual_config
from lxrt.tokenization import BertTokenizer
from lxrt.modeling import LXRTPretraining
DataTuple = collections.namedtuple("DataTuple", 'dataset torchdset loader evaluator')
def get_tuple(splits: str, bs: int, shuffle=False, drop_last=False, topk=-1) -> DataTuple:
# Decide which QA datasets would be used in pre-training.
# Options: vqa, gqa, visual7w
# Note: visual7w is a part of vgqa, we take the name here.
qa_sets = args.qa_sets
if qa_sets is not None:
qa_sets = set(qa_set.lower().strip() for qa_set in qa_sets.split(","))
# Build dataset, data loader, and evaluator.
dset = LXMERTDataset(splits, qa_sets=qa_sets)
tset = LXMERTTorchDataset(dset, topk)
data_loader = DataLoader(
tset, batch_size=bs,
shuffle=shuffle, num_workers=args.num_workers,
collate_fn=lambda x: x,
drop_last=drop_last, pin_memory=True
)
evaluator = LXMERTEvaluator(dset)
print()
return DataTuple(dataset=dset, torchdset=tset, loader=data_loader, evaluator=evaluator)
train_tuple = get_tuple(args.train, args.batch_size, shuffle=True, drop_last=True)
valid_batch_size = 2048 if args.multiGPU else 512
valid_tuple = get_tuple(args.valid, valid_batch_size, shuffle=False, drop_last=False, topk=5000)
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self,
input_ids, input_mask, segment_ids, lm_label_ids,
visual_feats, obj_labels,
is_matched, ans):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.lm_label_ids = lm_label_ids
self.visual_feats = visual_feats
self.obj_labels = obj_labels
self.is_matched = is_matched
self.ans = ans
def random_word(tokens, tokenizer):
"""
Masking some random tokens for Language Model task with probabilities as in the original BERT paper.
:param tokens: list of str, tokenized sentence.
:param tokenizer: Tokenizer, object used for tokenization (we need it's vocab here)
:return: (list of str, list of int), masked tokens and related labels for LM prediction
"""
output_label = []
for i, token in enumerate(tokens):
prob = random.random()
# mask token with probability
ratio = args.word_mask_rate
if prob < ratio:
prob /= ratio
# 80% randomly change token to mask token
if prob < 0.8:
tokens[i] = "[MASK]"
# 10% randomly change token to random token
elif prob < 0.9:
tokens[i] = random.choice(list(tokenizer.vocab.items()))[0]
# -> rest 10% randomly keep current token
# append current token to output (we will predict these later)
try:
output_label.append(tokenizer.vocab[token])
except KeyError:
# For unknown words (should not occur with BPE vocab)
output_label.append(tokenizer.vocab["[UNK]"])
else:
# no masking token (will be ignored by loss function later)
output_label.append(-1)
return tokens, output_label
def random_feat(feats):
mask_feats = feats.copy()
feat_mask = np.zeros(len(feats), dtype=np.float32)
for i in range(len(feats)):
prob = random.random()
# mask token with probability
if prob < args.obj_mask_rate:
prob /= args.obj_mask_rate
# 80% randomly change token to zero feat
if prob < 0.8:
mask_feats[i, :] = 0.
# 10% randomly change token to random feat
elif prob < 0.9:
mask_feats[i, :] = train_tuple.torchdset.random_feat()
# -> rest 10% randomly keep current feat
# Need to predict this feat
feat_mask[i] = 1.
return mask_feats, feat_mask
def convert_example_to_features(example: InputExample, max_seq_length, tokenizer)->InputFeatures:
"""
Convert a raw sample (pair of sentences as tokenized strings) into a proper training sample with
IDs, LM labels, input_mask, CLS and SEP tokens etc.
:param example: InputExample, containing sentence input as strings and is_next label
:param max_seq_length: int, maximum length of sequence.
:param tokenizer: Tokenizer
:return: InputFeatures, containing all inputs and labels of one sample as IDs (as used for model training)
"""
tokens = tokenizer.tokenize(example.sent.strip())
# Account for [CLS] and [SEP] with "- 2"
if len(tokens) > max_seq_length - 2:
tokens = tokens[:(max_seq_length - 2)]
# Ge random words
masked_tokens, masked_label = random_word(tokens, tokenizer)
# concatenate lm labels and account for CLS, SEP, SEP
masked_tokens = ['[CLS]'] + masked_tokens + ['[SEP]']
input_ids = tokenizer.convert_tokens_to_ids(masked_tokens)
# Mask & Segment Word
lm_label_ids = ([-1] + masked_label + [-1])
input_mask = [1] * len(input_ids)
segment_ids = [0] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
lm_label_ids.append(-1)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
assert len(lm_label_ids) == max_seq_length
feat, boxes = example.visual_feats
obj_labels, obj_confs = example.obj_labels
attr_labels, attr_confs = example.attr_labels
# Mask Image Features:
masked_feat, feat_mask = random_feat(feat)
# QA answer label
if example.label is None or len(example.label) == 0 or example.is_matched != 1:
# 1. No label 2. Label is pruned 3. unmatched visual + language pair
ans = -1
else:
keys, values = zip(*example.label.items())
if len(keys) == 1:
ans = keys[0]
else:
value_sum = sum(values)
prob = [value / value_sum for value in values]
choice = np.random.multinomial(1, prob).argmax()
ans = keys[choice]
features = InputFeatures(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
lm_label_ids=lm_label_ids,
visual_feats=(masked_feat, boxes),
obj_labels={
'obj': (obj_labels, obj_confs),
'attr': (attr_labels, attr_confs),
'feat': (feat, feat_mask),
},
is_matched=example.is_matched,
ans=ans,
)
return features
LOSSES_NAME = ('Mask_LM', 'Matched', 'Obj', 'Attr', 'Feat', 'QA')
class LXMERT:
def __init__(self, max_seq_length):
super().__init__()
self.max_seq_length = max_seq_length
self.tokenizer = BertTokenizer.from_pretrained(
"bert-base-uncased",
do_lower_case=True
)
# Build model
set_visual_config(args)
self.model = LXRTPretraining.from_pretrained(
"bert-base-uncased",
task_mask_lm=args.task_mask_lm,
task_obj_predict=args.task_obj_predict,
task_matched=args.task_matched,
task_qa=args.task_qa,
visual_losses=args.visual_losses,
num_answers=train_tuple.dataset.answer_table.num_answers
)
# Weight initialization and loading
if args.from_scratch:
print("Train from Scratch: re-initialize all BERT weights.")
self.model.apply(self.model.init_bert_weights)
if args.load is not None:
self.load(args.load)
if args.load_lxmert is not None:
# Load lxmert would not load the answer head.
self.load_lxmert(args.load_lxmert)
# GPU Options
self.model = self.model.cuda()
if args.multiGPU:
self.model = nn.DataParallel(self.model)
def forward(self, examples):
train_features = [convert_example_to_features(example, self.max_seq_length, self.tokenizer)
for example in examples]
# language Inputs
input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long).cuda()
input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long).cuda()
segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long).cuda()
# Visual Inputs
feats = torch.from_numpy(np.stack([f.visual_feats[0] for f in train_features])).cuda()
pos = torch.from_numpy(np.stack([f.visual_feats[1] for f in train_features])).cuda()
# Language Prediction
lm_labels = torch.tensor([f.lm_label_ids for f in train_features], dtype=torch.long).cuda()
# Visual Prediction
obj_labels = {}
for key in ('obj', 'attr', 'feat'):
visn_labels = torch.from_numpy(np.stack([f.obj_labels[key][0] for f in train_features])).cuda()
visn_mask = torch.from_numpy(np.stack([f.obj_labels[key][1] for f in train_features])).cuda()
assert visn_labels.size(0) == visn_mask.size(0) and visn_labels.size(1) == visn_mask.size(1)
obj_labels[key] = (visn_labels, visn_mask)
# Joint Prediction
matched_labels = torch.tensor([f.is_matched for f in train_features], dtype=torch.long).cuda()
ans = torch.from_numpy(np.stack([f.ans for f in train_features])).cuda()
"""
forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None,
visual_feats=None, pos=None, obj_labels=None, matched_label=None, ans=None):
"""
loss, losses, ans_logit = self.model(
input_ids, segment_ids, input_mask, lm_labels,
feats, pos, obj_labels, matched_labels, ans
)
return loss, losses.detach().cpu(), ans_logit
def train_batch(self, optim, batch):
optim.zero_grad()
loss, losses, ans_logit = self.forward(batch)
if args.multiGPU:
loss = loss.mean()
losses = losses.mean(0)
loss.backward()
nn.utils.clip_grad_norm_(self.model.parameters(), 1.)
optim.step()
return loss.item(), losses.cpu().numpy(), ans_logit
def valid_batch(self, batch):
with torch.no_grad():
loss, losses, ans_logit = self.forward(batch)
if args.multiGPU:
loss = loss.mean()
losses = losses.mean(0)
return loss.item(), losses.cpu().numpy(), ans_logit
def train(self, train_tuple: DataTuple, eval_tuple: DataTuple):
train_ld = train_tuple.loader
# Optimizer
from lxrt.optimization import BertAdam
batch_per_epoch = len(train_ld)
t_total = int(batch_per_epoch * args.epochs)
warmup_ratio = 0.05
warmup_iters = int(t_total * warmup_ratio)
print("Batch per epoch: %d" % batch_per_epoch)
print("Total Iters: %d" % t_total)
print("Warm up Iters: %d" % warmup_iters)
optim = BertAdam(self.model.parameters(), lr=args.lr, warmup=warmup_ratio, t_total=t_total)
# Train
best_eval_loss = 9595.
for epoch in range(args.epochs):
# Train
self.model.train()
total_loss = 0.
total_losses = 0.
uid2ans = {}
for batch in tqdm(train_ld, total=len(train_ld)):
loss, losses, logit = self.train_batch(optim, batch)
total_loss += loss
total_losses += losses
if args.task_qa:
score, label = logit.max(1)
for datum, l in zip(batch, label.cpu().numpy()):
uid = datum.uid
ans = train_tuple.dataset.answer_table.id2ans(l)
uid2ans[uid] = ans
print("The training loss for Epoch %d is %0.4f" % (epoch, total_loss / batch_per_epoch))
losses_str = "The losses are "
for name, loss in zip(LOSSES_NAME, total_losses):
losses_str += "%s: %0.4f " % (name, loss / batch_per_epoch)
print(losses_str)
if args.task_qa:
train_tuple.evaluator.evaluate(uid2ans, pprint=True)
# Eval
avg_eval_loss = self.evaluate_epoch(eval_tuple, iters=-1)
# Save
if avg_eval_loss < best_eval_loss:
best_eval_loss = avg_eval_loss
self.save("BEST_EVAL_LOSS")
self.save("Epoch%02d" % (epoch+1))
def evaluate_epoch(self, eval_tuple: DataTuple, iters: int=-1):
self.model.eval()
eval_ld = eval_tuple.loader
total_loss = 0.
total_losses = 0.
uid2ans = {}
for i, batch in enumerate(eval_ld):
loss, losses, logit = self.valid_batch(batch)
total_loss += loss
total_losses += losses
if args.task_qa:
score, label = logit.max(1)
for datum, l in zip(batch, label.cpu().numpy()):
uid = datum.uid
ans = train_tuple.dataset.answer_table.id2ans(l)
uid2ans[uid] = ans
if i == iters:
break
print("The valid loss is %0.4f" % (total_loss / len(eval_ld)))
losses_str = "The losses are "
for name, loss in zip(LOSSES_NAME, total_losses / len(eval_ld)):
losses_str += "%s: %0.4f " % (name, loss)
print(losses_str)
if args.task_qa:
eval_tuple.evaluator.evaluate(uid2ans, pprint=True)
return total_loss / len(eval_ld)
def save(self, name):
torch.save(self.model.state_dict(),
os.path.join(args.output, "%s_LXRT.pth" % name))
def load(self, path):
print("Load BERT extractor from %s" % path)
state_dict = torch.load("%s_LXRT.pth" % path)
self.model.load_state_dict(state_dict)
def load_lxmert(self, path):
print("Load lxmert model from %s" % path)
state_dict = torch.load("%s_LXRT.pth" % path)
# Do not load any answer head
for key in list(state_dict.keys()):
if 'answer' in key:
state_dict.pop(key)
# Change Multi GPU to single GPU
new_state_dict = {}
for key, value in state_dict.items():
if key.startswith("module."):
new_state_dict[key[len("module."):]] = value
state_dict = new_state_dict
load_keys = set(state_dict.keys())
model_keys = set(self.model.state_dict().keys())
print()
print("Keys in loaded but not in model:")
for key in sorted(load_keys.difference(model_keys)):
print(key)
print()
print("Keys in model but not in loaded:")
for key in sorted(model_keys.difference(load_keys)):
print(key)
print()
self.model.load_state_dict(state_dict, strict=False)
if __name__ == "__main__":
lxmert = LXMERT(max_seq_length=20)
lxmert.train(train_tuple, valid_tuple)
|