File size: 8,847 Bytes
08d7644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# coding=utf-8
# Copyleft 2019 project LXRT.

from collections import defaultdict
import json
import random

import numpy as np
from torch.utils.data import Dataset

from param import args
from pretrain.qa_answer_table import AnswerTable
from utils import load_obj_tsv

TINY_IMG_NUM = 500
FAST_IMG_NUM = 5000

Split2ImgFeatPath = {
    'mscoco_train': 'data/mscoco_imgfeat/train2014_obj36.tsv',
    'mscoco_minival': 'data/mscoco_imgfeat/val2014_obj36.tsv',
    'mscoco_nominival': 'data/mscoco_imgfeat/val2014_obj36.tsv',
    'vgnococo': 'data/vg_gqa_imgfeat/vg_gqa_obj36.tsv',
}


class InputExample(object):
    """A single training/test example for the language model."""
    def __init__(self, uid, sent, visual_feats=None,
                 obj_labels=None, attr_labels=None,
                 is_matched=None, label=None):
        self.uid = uid
        self.sent = sent
        self.visual_feats = visual_feats
        self.obj_labels = obj_labels
        self.attr_labels = attr_labels
        self.is_matched = is_matched  # whether the visual and obj matched
        self.label = label


class LXMERTDataset:
    def __init__(self, splits: str, qa_sets=None):
        """
        :param splits: The data sources to be loaded
        :param qa_sets: if None, no action
                        o.w., only takes the answers appearing in these dsets
                              and remove all unlabeled data (MSCOCO captions)
        """
        self.name = splits
        self.sources = splits.split(',')

        # Loading datasets to data
        self.data = []
        for source in self.sources:
            self.data.extend(json.load(open("data/lxmert/%s.json" % source)))
        print("Load %d data from %s" % (len(self.data), self.name))

        # Create answer table according to the qa_sets
        self.answer_table = AnswerTable(qa_sets)
        print("Load an answer table of size %d." % (len(self.answer_table.ans2id_map())))

        # Modify the answers
        for datum in self.data:
            labelf = datum['labelf']
            for cat, labels in labelf.items():
                for label in labels:
                    for ans in list(label.keys()):
                        new_ans = self.answer_table.convert_ans(ans)
                        if self.answer_table.used(new_ans):
                            if ans != new_ans:
                                label[new_ans] = label.pop(ans)
                        else:
                            label.pop(ans)

    def __len__(self):
        return len(self.data)


def make_uid(img_id, dset, sent_idx):
    return "%s_%s_%03d" % (img_id, dset, sent_idx),


"""
Example in obj tsv:
FIELDNAMES = ["img_id", "img_h", "img_w", "objects_id", "objects_conf",
              "attrs_id", "attrs_conf", "num_boxes", "boxes", "features"]
"""
class LXMERTTorchDataset(Dataset):
    def __init__(self, dataset: LXMERTDataset, topk=-1):
        super().__init__()
        self.raw_dataset = dataset
        self.task_matched = args.task_matched

        if args.tiny:
            topk = TINY_IMG_NUM
        elif args.fast:
            topk = FAST_IMG_NUM

        # Load the dataset
        img_data = []
        for source in self.raw_dataset.sources:
            img_data.extend(load_obj_tsv(Split2ImgFeatPath[source], topk))

        self.imgid2img = {}
        for img_datum in img_data:
            self.imgid2img[img_datum['img_id']] = img_datum

        # Filter out the dataset
        used_data = []
        for datum in self.raw_dataset.data:
            if datum['img_id'] in self.imgid2img:
                used_data.append(datum)

        # Flatten the dataset (into one sent + one image entries)
        self.data = []
        for datum in used_data:
            sentf = datum['sentf']
            for sents_cat, sents in sentf.items():
                if sents_cat in datum['labelf']:
                    labels = datum['labelf'][sents_cat]
                else:
                    labels = None
                for sent_idx, sent in enumerate(sents):
                    new_datum = {
                        'uid': make_uid(datum['img_id'], sents_cat, sent_idx),
                        'img_id': datum['img_id'],
                        'sent': sent
                    }
                    if labels is not None:
                        new_datum['label'] = labels[sent_idx]
                    self.data.append(new_datum)
        print("Use %d data in torch dataset" % (len(self.data)))

    def __len__(self):
        return len(self.data)

    def random_feat(self):
        """Get a random obj feat from the dataset."""
        datum = self.data[random.randint(0, len(self.data)-1)]
        img_id = datum['img_id']
        img_info = self.imgid2img[img_id]
        feat = img_info['features'][random.randint(0, 35)]
        return feat

    def __getitem__(self, item: int):
        datum = self.data[item]

        uid = datum['uid']
        img_id = datum['img_id']

        # Get image info
        img_info = self.imgid2img[img_id]
        obj_num = img_info['num_boxes']
        feats = img_info['features'].copy()
        boxes = img_info['boxes'].copy()
        obj_labels = img_info['objects_id'].copy()
        obj_confs = img_info['objects_conf'].copy()
        attr_labels = img_info['attrs_id'].copy()
        attr_confs = img_info['attrs_conf'].copy()
        assert obj_num == len(boxes) == len(feats)

        # Normalize the boxes (to 0 ~ 1)
        img_h, img_w = img_info['img_h'], img_info['img_w']
        boxes = boxes.copy()
        boxes[:, (0, 2)] /= img_w
        boxes[:, (1, 3)] /= img_h
        np.testing.assert_array_less(boxes, 1+1e-5)
        np.testing.assert_array_less(-boxes, 0+1e-5)

        # If calculating the matched loss, replace the sentence with an sentence
        # corresponding to other image.
        is_matched = 1
        sent = datum['sent']
        if self.task_matched:
            if random.random() < 0.5:
                is_matched = 0
                other_datum = self.data[random.randint(0, len(self.data)-1)]
                while other_datum['img_id'] == img_id:
                    other_datum = self.data[random.randint(0, len(self.data)-1)]
                sent = other_datum['sent']

        # Label, convert answer to id
        if 'label' in datum:
            label = datum['label'].copy()
            for ans in list(label.keys()):
                label[self.raw_dataset.answer_table.ans2id(ans)] = label.pop(ans)
        else:
            label = None

        # Create target
        example = InputExample(
            uid, sent, (feats, boxes),
            (obj_labels, obj_confs), (attr_labels, attr_confs),
            is_matched, label
        )
        return example


class LXMERTEvaluator:
    def __init__(self, dataset: LXMERTDataset):
        self.raw_dataset = dataset

        # Create QA Eval Data
        self.data = []
        for datum in self.raw_dataset.data:
            sentf = datum['sentf']
            for sents_cat, sents in sentf.items():
                if sents_cat in datum['labelf']:    # A labeled dataset
                    labels = datum['labelf'][sents_cat]
                    for sent_idx, sent in enumerate(sents):
                        new_datum = {
                            'uid': make_uid(datum['img_id'], sents_cat, sent_idx),
                            'img_id': datum['img_id'],
                            'sent': sent,
                            'dset': sents_cat,
                            'label': labels[sent_idx]
                        }
                        self.data.append(new_datum)

        # uid2datum
        self.uid2datum = {}
        for datum in self.data:
            self.uid2datum[datum['uid']] = datum

    def evaluate(self, uid2ans: dict, pprint=False):
        score = 0.
        cnt = 0
        dset2score = defaultdict(lambda: 0.)
        dset2cnt = defaultdict(lambda: 0)
        for uid, ans in uid2ans.items():
            if uid not in self.uid2datum:   # Not a labeled data
                continue
            datum = self.uid2datum[uid]
            label = datum['label']
            dset = datum['dset']
            if ans in label:
                score += label[ans]
                dset2score[dset] += label[ans]
            cnt += 1
            dset2cnt[dset] += 1
        accu = score / cnt
        dset2accu = {}
        for dset in dset2cnt:
            dset2accu[dset] = dset2score[dset] / dset2cnt[dset]

        if pprint:
            accu_str = "Overall Accu %0.4f, " % (accu)
            sorted_keys = sorted(dset2accu.keys())
            for key in sorted_keys:
                accu_str += "%s Accu %0.4f, " % (key, dset2accu[key])
            print(accu_str)

        return accu, dset2accu

    def dump_result(self, uid2ans: dict, path):
        raise NotImplemented