Spaces:
Paused
Paused
File size: 7,155 Bytes
60b53a6 33f0de1 6696db2 33f0de1 60b53a6 3c28324 f18c3eb 9787d82 33f0de1 ea35578 2759f98 55f3d52 6cca076 55f3d52 2deee43 55f3d52 2deee43 cd6f17c 55f3d52 cd6f17c 55f3d52 cd6f17c 33f0de1 6cca076 60b53a6 55f3d52 33f0de1 55f3d52 bdd35f2 8869d77 55f3d52 f18c3eb 2deee43 6cca076 55f3d52 6cca076 55f3d52 6cca076 9255c5c 6cca076 55f3d52 6cca076 12f46b7 6cca076 2deee43 8869d77 2deee43 f18c3eb 55f3d52 cd6f17c 55f3d52 cd6f17c 55f3d52 cd6f17c bdd35f2 cd6f17c 6cca076 55f3d52 19de71a 33f0de1 cd6f17c 33f0de1 55f3d52 33f0de1 6cca076 33f0de1 0c7cad3 3226776 33f0de1 3226776 33f0de1 f18c3eb 33f0de1 6cca076 3c28324 3226776 33f0de1 55f3d52 cd6f17c 55f3d52 cd6f17c 6cca076 3226776 f18c3eb 33f0de1 3c28324 33f0de1 6cca076 60b53a6 0c7cad3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from huggingface_hub import login
import os
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import time
# Authentification
login(token=os.environ["HF_TOKEN"])
# Structure hiérarchique des modèles
model_hierarchy = {
"meta-llama": {
"Llama-2": ["7B", "13B", "70B"],
"Llama-3": ["8B", "3.2B", "3.1B"]
},
"mistralai": {
"Mistral": ["7B-v0.1", "7B-v0.3"],
"Mixtral": ["8x7B-v0.1"]
},
"google": {
"Gemma": ["2B", "9B", "27B"]
},
"croissantllm": {
"CroissantLLM": ["Base"]
}
}
# Mise à jour de la liste des modèles et leurs langues supportées
models_and_languages = {
"meta-llama/Llama-2-7B": ["en"],
"meta-llama/Llama-2-13B": ["en"],
"meta-llama/Llama-2-70B": ["en"],
"meta-llama/Llama-3-8B": ["en"],
"meta-llama/Llama-3-3.2B": ["en", "de", "fr", "it", "pt", "hi", "es", "th"],
"meta-llama/Llama-3-3.1B": ["en", "de", "fr", "it", "pt", "hi", "es", "th"],
"mistralai/Mistral-7B-v0.1": ["en"],
"mistralai/Mixtral-8x7B-v0.1": ["en", "fr", "it", "de", "es"],
"mistralai/Mistral-7B-v0.3": ["en"],
"google/Gemma-2B": ["en"],
"google/Gemma-9B": ["en"],
"google/Gemma-27B": ["en"],
"croissantllm/CroissantLLMBase": ["en", "fr"]
}
# Paramètres recommandés pour chaque modèle
model_parameters = {
"meta-llama/Llama-2-7B": {"temperature": 0.8, "top_p": 0.9, "top_k": 40},
"meta-llama/Llama-2-13B": {"temperature": 0.8, "top_p": 0.9, "top_k": 40},
"meta-llama/Llama-2-70B": {"temperature": 0.8, "top_p": 0.9, "top_k": 40},
"meta-llama/Llama-3-8B": {"temperature": 0.75, "top_p": 0.9, "top_k": 50},
"meta-llama/Llama-3-3.2B": {"temperature": 0.75, "top_p": 0.9, "top_k": 50},
"meta-llama/Llama-3-3.1B": {"temperature": 0.75, "top_p": 0.9, "top_k": 50},
"mistralai/Mistral-7B-v0.1": {"temperature": 0.7, "top_p": 0.9, "top_k": 50},
"mistralai/Mixtral-8x7B-v0.1": {"temperature": 0.8, "top_p": 0.95, "top_k": 50},
"mistralai/Mistral-7B-v0.3": {"temperature": 0.7, "top_p": 0.9, "top_k": 50},
"google/Gemma-2B": {"temperature": 0.7, "top_p": 0.95, "top_k": 40},
"google/Gemma-9B": {"temperature": 0.7, "top_p": 0.95, "top_k": 40},
"google/Gemma-27B": {"temperature": 0.7, "top_p": 0.95, "top_k": 40},
"croissantllm/CroissantLLMBase": {"temperature": 0.8, "top_p": 0.92, "top_k": 50}
}
# Variables globales
model = None
tokenizer = None
selected_language = None
def update_model_choices(company):
return gr.Dropdown(choices=list(model_hierarchy[company].keys()), value=None)
def update_variation_choices(company, model_name):
return gr.Dropdown(choices=model_hierarchy[company][model_name], value=None)
def load_model(company, model_name, variation, progress=gr.Progress()):
global model, tokenizer
full_model_name = f"{company}/{model_name}-{variation}"
try:
progress(0, desc="Chargement du tokenizer")
tokenizer = AutoTokenizer.from_pretrained(full_model_name)
progress(0.5, desc="Chargement du modèle")
# Configurations spécifiques par modèle
if "mixtral" in full_model_name.lower():
model = AutoModelForCausalLM.from_pretrained(
full_model_name,
torch_dtype=torch.float16,
device_map="auto",
load_in_8bit=True
)
else:
model = AutoModelForCausalLM.from_pretrained(
full_model_name,
torch_dtype=torch.float16,
device_map="auto"
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
progress(1.0, desc="Modèle chargé")
available_languages = models_and_languages[full_model_name]
# Mise à jour des sliders avec les valeurs recommandées
params = model_parameters[full_model_name]
return (
f"Modèle {full_model_name} chargé avec succès. Langues disponibles : {', '.join(available_languages)}",
gr.Dropdown(choices=available_languages, value=available_languages[0], visible=True, interactive=True),
params["temperature"],
params["top_p"],
params["top_k"]
)
except Exception as e:
return f"Erreur lors du chargement du modèle : {str(e)}", gr.Dropdown(visible=False), None, None, None
# Le reste du code reste inchangé
# ...
with gr.Blocks() as demo:
gr.Markdown("# LLM&BIAS")
with gr.Accordion("Sélection du modèle"):
company_dropdown = gr.Dropdown(choices=list(model_hierarchy.keys()), label="Choisissez une société")
model_dropdown = gr.Dropdown(label="Choisissez un modèle", choices=[])
variation_dropdown = gr.Dropdown(label="Choisissez une variation", choices=[])
load_button = gr.Button("Charger le modèle")
load_output = gr.Textbox(label="Statut du chargement")
language_dropdown = gr.Dropdown(label="Choisissez une langue", visible=False)
language_output = gr.Textbox(label="Langue sélectionnée")
with gr.Row():
temperature = gr.Slider(0.1, 2.0, value=1.0, label="Température")
top_p = gr.Slider(0.1, 1.0, value=1.0, label="Top-p")
top_k = gr.Slider(1, 100, value=50, step=1, label="Top-k")
input_text = gr.Textbox(label="Texte d'entrée", lines=3)
analyze_button = gr.Button("Analyser le prochain token")
next_token_probs = gr.Textbox(label="Probabilités du prochain token")
with gr.Row():
attention_plot = gr.Plot(label="Visualisation de l'attention")
prob_plot = gr.Plot(label="Probabilités des tokens suivants")
generate_button = gr.Button("Générer le prochain mot")
generated_text = gr.Textbox(label="Texte généré")
reset_button = gr.Button("Réinitialiser")
company_dropdown.change(update_model_choices, inputs=[company_dropdown], outputs=[model_dropdown])
model_dropdown.change(update_variation_choices, inputs=[company_dropdown, model_dropdown], outputs=[variation_dropdown])
load_button.click(load_model,
inputs=[company_dropdown, model_dropdown, variation_dropdown],
outputs=[load_output, language_dropdown, temperature, top_p, top_k])
language_dropdown.change(set_language, inputs=[language_dropdown], outputs=[language_output])
analyze_button.click(analyze_next_token,
inputs=[input_text, temperature, top_p, top_k],
outputs=[next_token_probs, attention_plot, prob_plot])
generate_button.click(generate_text,
inputs=[input_text, temperature, top_p, top_k],
outputs=[generated_text])
reset_button.click(reset,
outputs=[input_text, temperature, top_p, top_k, next_token_probs, attention_plot, prob_plot, generated_text, language_dropdown, language_output])
if __name__ == "__main__":
demo.launch()
|