import streamlit as st from meta_ai_api import MetaAI # Initialize Meta AI API ai = MetaAI() def fetch_response(query): response = ai.prompt(message=query) return response def display_sources(sources): with st.expander("Show Sources"): for source in sources: st.markdown(f"[{source['title']}]({source['link']})", unsafe_allow_html=True) def main(): st.title("AI Response Analytics Tool") # User input user_query = st.text_area("Enter your query:", height=150) submit_button = st.button("Analyze Query") if submit_button and user_query: # Fetching response from Meta AI response = fetch_response(user_query) # Display the AI response directly st.write("### AI Response") st.write(response['message']) # Display sources with clickable links in a collapsible section if 'sources' in response: display_sources(response['sources']) # Additional features such as sentiment analysis, keyword extraction, and response analysis can be added here. # Optionally, consider saving queries and responses for historical analysis or comparison. if __name__ == "__main__": main()