File size: 1,229 Bytes
645bb63
 
 
 
 
 
 
 
 
 
 
a030ddc
 
62435e7
645bb63
 
 
 
 
 
 
 
 
 
 
62435e7
 
 
 
 
a030ddc
645bb63
 
 
62435e7
 
645bb63
 
62435e7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import streamlit as st
from meta_ai_api import MetaAI

# Initialize Meta AI API
ai = MetaAI()

def fetch_response(query):
    response = ai.prompt(message=query)
    return response

def display_sources(sources):
    with st.expander("Show Sources"):
        for source in sources:
            st.markdown(f"[{source['title']}]({source['link']})", unsafe_allow_html=True)

def main():
    st.title("AI Response Analytics Tool")

    # User input
    user_query = st.text_area("Enter your query:", height=150)
    submit_button = st.button("Analyze Query")

    if submit_button and user_query:
        # Fetching response from Meta AI
        response = fetch_response(user_query)
        
        # Display the AI response directly
        st.write("### AI Response")
        st.write(response['message'])
        
        # Display sources with clickable links in a collapsible section
        if 'sources' in response:
            display_sources(response['sources'])

        # Additional features such as sentiment analysis, keyword extraction, and response analysis can be added here.
        # Optionally, consider saving queries and responses for historical analysis or comparison.

if __name__ == "__main__":
    main()