entity-linking / app.py
cyberandy's picture
major update
542aecd
raw
history blame
2.79 kB
import streamlit as st
from annotated_text import annotated_text
from refined.inference.processor import Refined
import nltk
nltk.download('punkt')
# Sidebar
st.sidebar.image("logo-wordlift.png")
# Initiate the model
model_options = {"aida_model", "wikipedia_model_with_numbers"}
selected_model_name = st.sidebar.selectbox("Select the Model", list(model_options))
@st.cache_resource # πŸ‘ˆ Add the caching decorator
def load_model(model_name):
# Load the pretrained model
refined_model = Refined.from_pretrained(model_name=model_name, entity_set="wikipedia")
return refined_model
# Use the cached model
refined_model = load_model(selected_model_name)
# Helper functions
def get_wikidata_id(entity_string):
entity_list = entity_string.split("=")
return "https://www.wikidata.org/wiki/" + str(entity_list[1])
# Create the form
with st.form(key='my_form'):
text_input = st.text_input(label='Enter a sentence')
submit_button = st.form_submit_button(label='Submit')
# Process the text and extract the entities
if text_input:
entities = refined_model.process_text(text_input)
entities_map = {}
entities_link_descriptions = {}
for entity in entities:
single_entity_list = str(entity).strip('][').replace("\'", "").split(', ')
if len(single_entity_list) >= 2 and "wikidata" in single_entity_list[1]:
entities_map[get_wikidata_id(single_entity_list[1]).strip()] = single_entity_list[0].strip()
entities_link_descriptions[get_wikidata_id(single_entity_list[1]).strip()] = single_entity_list[2].strip().replace("(", "").replace(")", "")
combined_entity_info_dictionary = dict([(k, [entities_map[k], entities_link_descriptions[k]]) for k in entities_map])
def get_entity_description(entity_link, combined_entity_info_dictionary):
return combined_entity_info_dictionary[entity_link][1]
annotations = []
for wikidata_link, entity in entities_map.items():
description = get_entity_description(wikidata_link, combined_entity_info_dictionary)
annotations.append((entity, description, "#8ef"))
# Annotate text with entities
if submit_button:
# Split the input text into words
words = nltk.word_tokenize(text_input)
# Prepare a list to hold the final output
final_text = []
for word in words:
# If the word is an entity, annotate it
if word in entities_map.keys():
final_text.append((word, get_entity_description(word, combined_entity_info_dictionary), "#8ef"))
# If the word is not an entity, keep it as it is
else:
final_text.append(word)
# Pass the final_text to the annotated_text function
annotated_text(*final_text)