import gradio as gr import requests from bs4 import BeautifulSoup import os import json import logging import pandas as pd # Useful for creating the dataframe output from typing import Optional, List, Dict, Any # Add this line # ------------------------ # Configuration # ------------------------ WORDLIFT_API_URL = "https://api.wordlift.io/content-evaluations" WORDLIFT_API_KEY = os.getenv("WORDLIFT_API_KEY") # Get API key from environment variable # Set up logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # ------------------------ # Custom CSS & Theme # ------------------------ css = """ @import url('https://fonts.googleapis.com/css2?family=Open+Sans:wght@300;400;600;700&display=swap'); body { font-family: 'Open Sans', sans-serif !important; } .primary-btn { background-color: #3452db !important; color: white !important; } .primary-btn:hover { background-color: #2a41af !important; } .gradio-container { max-width: 1200px; /* Limit width for better readability */ margin: auto; } """ theme = gr.themes.Soft( primary_hue=gr.themes.colors.Color( name="blue", c50="#eef1ff", c100="#e0e5ff", c200="#c3cbff", c300="#a5b2ff", c400="#8798ff", c500="#6a7eff", c600="#3452db", c700="#2a41af", c800="#1f3183", c900="#152156", c950="#0a102b", ) ) # ------------------------ # Content Fetching Logic # ------------------------ def fetch_content_from_url(url: str, timeout: int = 15) -> str: """Fetches main text content from a URL.""" logger.info(f"Fetching content from: {url}") try: headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36' } response = requests.get(url, headers=headers, timeout=timeout) response.raise_for_status() # Raise an exception for bad status codes soup = BeautifulSoup(response.content, 'html.parser') # Attempt to find main content block main_content = soup.find('main') or soup.find('article') if main_content: # Extract text from common text-containing tags within the main block text_elements = main_content.find_all(['p', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'li', 'blockquote']) text = ' '.join([elem.get_text() for elem in text_elements]) else: # Fallback to extracting text from body if no main block found text_elements = soup.body.find_all(['p', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'li', 'blockquote']) text = ' '.join([elem.get_text() for elem in text_elements]) logger.warning(f"No
or
found for {url}, extracting from body.") # Clean up extra whitespace text = ' '.join(text.split()) # Limit text length to avoid excessively large API calls (adjust as needed) max_text_length = 150000 # approx 25k words, adjust based on API limits/cost if len(text) > max_text_length: logger.warning(f"Content for {url} is too long ({len(text)} chars), truncating to {max_text_length} chars.") text = text[:max_text_length] + "..." # Indicate truncation return text except requests.exceptions.RequestException as e: logger.error(f"Failed to fetch content from {url}: {e}") return None except Exception as e: logger.error(f"Error processing content from {url}: {e}") return None # ------------------------ # WordLift API Call Logic # ------------------------ def call_wordlift_api(text: str, keywords: Optional[List[str]] = None) -> Optional[Dict[str, Any]]: """Calls the WordLift Content Evaluation API.""" if not WORDLIFT_API_KEY: logger.error("WORDLIFT_API_KEY environment variable not set.") return {"error": "API key not configured."} if not text: return {"error": "No content provided or fetched."} payload = { "text": text, "keywords": keywords if keywords else [] } headers = { 'Authorization': f'Key {WORDLIFT_API_KEY}', 'Content-Type': 'application/json', 'Accept': 'application/json' } logger.info(f"Calling WordLift API with text length {len(text)} and {len(keywords or [])} keywords.") try: response = requests.post(WORDLIFT_API_URL, headers=headers, json=payload, timeout=60) # Increased timeout response.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx) return response.json() except requests.exceptions.HTTPError as e: logger.error(f"WordLift API HTTP error: {e.response.status_code} - {e.response.text}") try: error_detail = e.response.json() except json.JSONDecodeError: error_detail = e.response.text return {"error": f"API returned status code {e.response.status_code}", "details": error_detail} except requests.exceptions.RequestException as e: logger.error(f"WordLift API request error: {e}") return {"error": f"API request failed: {e}"} except Exception as e: logger.error(f"Unexpected error during API call: {e}") return {"error": f"An unexpected error occurred: {e}"} # ------------------------ # Main Evaluation Batch Function # ------------------------ def evaluate_urls_batch(url_data: pd.DataFrame): """ Evaluates a batch of URLs using the WordLift API. Args: url_data: A pandas DataFrame with columns ['URL', 'Target Keywords (comma-separated)']. Returns: A tuple containing: - A pandas DataFrame with the summary results. - A dictionary containing the full results (including errors) keyed by URL. """ if not url_data or url_data.empty: return pd.DataFrame(columns=['URL', 'Status', 'Overall Score', 'Content Purpose', 'Content Accuracy', 'Content Depth', 'Readability Score (API)', 'Readability Grade Level', 'SEO Score', 'Word Count', 'Error/Details']), {} summary_results = [] full_results = {} for index, row in url_data.iterrows(): url = row['URL'].strip() keywords_str = row['Target Keywords (comma-separated)'].strip() if row['Target Keywords (comma-separated)'] else "" keywords = [kw.strip() for kw in keywords_str.split(',') if kw.strip()] if not url: summary_results.append([url, "Skipped", None, None, None, None, None, None, None, None, "Empty URL"]) full_results[url if url else f"Row_{index}"] = {"status": "Skipped", "error": "Empty URL input."} continue logger.info(f"Processing URL: {url} with keywords: {keywords}") # 1. Fetch Content content = fetch_content_from_url(url) if content is None or not content.strip(): status = "Failed" error_msg = "Failed to fetch or extract content." summary_results.append([url, status, None, None, None, None, None, None, None, None, error_msg]) full_results[url] = {"status": status, "error": error_msg} logger.error(f"Processing failed for {url}: {error_msg}") continue # Move to next URL # 2. Call WordLift API api_result = call_wordlift_api(content, keywords) # 3. Process API Result summary_row = [url] if api_result and "error" not in api_result: status = "Success" qs = api_result.get('quality_score', {}) breakdown = qs.get('breakdown', {}) content_breakdown = breakdown.get('content', {}) readability_breakdown = breakdown.get('readability', {}) seo_breakdown = breakdown.get('seo', {}) metadata = api_result.get('metadata', {}) summary_row.extend([ status, qs.get('overall', None), content_breakdown.get('purpose', None), content_breakdown.get('accuracy', None), content_breakdown.get('depth', None), readability_breakdown.get('score', None), # API's readability score (e.g. 2.5) readability_breakdown.get('grade_level', None), seo_breakdown.get('score', None), metadata.get('word_count', None), None # No error ]) full_results[url] = api_result # Store full API result else: status = "Failed" error_msg = api_result.get("error", "Unknown API error.") if api_result else "API call failed." details = api_result.get("details", "") if api_result else "" summary_row.extend([ status, None, None, None, None, None, None, None, None, f"{error_msg} {details}" ]) full_results[url] = {"status": status, "error": error_msg, "details": details} logger.error(f"API call failed for {url}: {error_msg} {details}") summary_results.append(summary_row) # Create pandas DataFrame for summary output summary_df = pd.DataFrame(summary_results, columns=[ 'URL', 'Status', 'Overall Score', 'Content Purpose', 'Content Accuracy', 'Content Depth', 'Readability Score (API)', 'Readability Grade Level', 'SEO Score', 'Word Count', 'Error/Details' ]) # Format numeric columns for display if they are not None for col in ['Overall Score', 'Content Purpose', 'Content Accuracy', 'Content Depth', 'Readability Score (API)', 'Readability Grade Level', 'SEO Score', 'Word Count']: if col in summary_df.columns: # Convert to numeric, coercing errors, then format summary_df[col] = pd.to_numeric(summary_df[col], errors='coerce') if col in ['Overall Score', 'Readability Score (API)', 'SEO Score']: summary_df[col] = summary_df[col].apply(lambda x: f'{x:.1f}' if pd.notna(x) else '-') else: summary_df[col] = summary_df[col].apply(lambda x: f'{int(x)}' if pd.notna(x) else '-') return summary_df, full_results # ------------------------ # Gradio Blocks Interface Setup # ------------------------ with gr.Blocks(css=css, theme=theme) as demo: gr.Markdown("# WordLift Multi-URL Content Evaluator") gr.Markdown( "Enter up to 30 URLs in the table below. " "Optionally, provide comma-separated target keywords for each URL. " "The app will fetch content from each URL and evaluate it using the WordLift API." ) with gr.Row(): with gr.Column(): url_input_df = gr.Dataframe( headers=["URL", "Target Keywords (comma-separated)"], datatype=["str", "str"], row_count=(1, 30), # Allow adding rows up to 30 col_count=(2, "fixed"), value=[["https://example.com/article1", "keyword A, keyword B"], ["https://example.com/article2", ""]], # Default examples label="URLs and Keywords" ) submit_button = gr.Button("Evaluate All URLs", elem_classes=["primary-btn"]) gr.Markdown("## Evaluation Results") with gr.Column(): summary_output_df = gr.DataFrame( label="Summary Results", headers=['URL', 'Status', 'Overall Score', 'Content Purpose', 'Content Accuracy', 'Content Depth', 'Readability Score (API)', 'Readability Grade Level', 'SEO Score', 'Word Count', 'Error/Details'], datatype=["str", "str", "str", "str", "str", "str", "str", "str", "str", "str", "str"], # Use str to handle '-' for missing values wrap=True # Wrap text in columns ) with gr.Accordion("Full JSON Results", open=False): full_results_json = gr.JSON(label="Raw API Results per URL") submit_button.click( fn=evaluate_urls_batch, inputs=[url_input_df], outputs=[summary_output_df, full_results_json] ) # Launch the app if __name__ == "__main__": if not WORDLIFT_API_KEY: logger.error("\n----------------------------------------------------------") logger.error("WORDLIFT_API_KEY environment variable is not set.") logger.error("Please set it before running the script:") logger.error(" export WORDLIFT_API_KEY='YOUR_API_KEY'") logger.error("Or if using a .env file and python-dotenv:") logger.error(" pip install python-dotenv") logger.error(" # Add WORDLIFT_API_KEY=YOUR_API_KEY to a .env file") logger.error(" # import dotenv; dotenv.load_dotenv()") logger.error(" # in your script before getting the key.") logger.error("----------------------------------------------------------\n") # Optionally exit or raise error here if the key is strictly required to launch # exit() pass # Allow launching, but API calls will fail logger.info("Launching Gradio app...") demo.launch()