File size: 2,834 Bytes
8712c90
5ee5132
 
 
0de14de
5ee5132
 
 
 
 
 
 
 
 
 
 
 
0de14de
5ee5132
0de14de
5ee5132
0de14de
5ee5132
e46988f
5ee5132
 
 
6814601
5ee5132
 
 
0de14de
5ee5132
 
 
 
6814601
5ee5132
 
 
 
 
 
 
 
 
 
0de14de
5ee5132
 
 
 
 
 
 
 
0de14de
5ee5132
 
 
 
 
 
 
 
 
 
8712c90
5ee5132
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import requests
import json
from typing import Dict, List
import numpy as np

def get_activation_values(text: str, feature_id: int) -> Dict:
    """Get activation values for a specific feature"""
    url = "https://www.neuronpedia.org/api/activation/new"
    data = {
        "feature": {
            "modelId": "gemma-2-2b",
            "layer": "0-gemmascope-mlp-16k",
            "index": str(feature_id)
        },
        "customText": text
    }
    
    response = requests.post(
        url,
        headers={"Content-Type": "application/json"},
        json=data
    )
    return response.json()

def calculate_density(values: List[float], threshold: float = 0.5) -> float:
    """Calculate activation density (% of tokens with activation > threshold)"""
    return sum(1 for v in values if v > threshold) / len(values)

def find_top_features_per_token(text: str, num_features: int = 5, 
                              max_density: float = 0.01, batch_size: int = 100) -> Dict:
    """Find top features for each token with density filtering"""
    
    # First get initial feature activations to get tokens
    sample_activation = get_activation_values(text, 0)
    tokens = sample_activation['tokens']
    token_features = {token: [] for token in tokens}
    
    # Process features in batches
    for start_idx in range(0, 16384, batch_size):
        for feature_id in range(start_idx, min(start_idx + batch_size, 16384)):
            result = get_activation_values(text, feature_id)
            values = result.get('values', [])
            
            # Calculate density and skip if too high
            density = calculate_density(values)
            if density > max_density:
                continue
            
            # Add feature to each token's list if activated
            for token_idx, (token, value) in enumerate(zip(tokens, values)):
                if value > 0.5:  # Activation threshold
                    token_features[token].append({
                        'feature_id': feature_id,
                        'activation': value,
                        'density': density
                    })
    
    # Sort features for each token and keep top N
    for token in token_features:
        token_features[token].sort(key=lambda x: x['activation'], reverse=True)
        token_features[token] = token_features[token][:num_features]
    
    return token_features

# Test the function
text = "Nike - Just Do It"
token_features = find_top_features_per_token(text)

# Print results
print(f"Text: {text}\n")
for token, features in token_features.items():
    if features:  # Only show tokens with active features
        print(f"\nToken: {token}")
        for feat in features:
            print(f"  Feature {feat['feature_id']}: activation={feat['activation']:.3f}, density={feat['density']:.3%}")