|
import gradio as gr |
|
import spaces |
|
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor |
|
from qwen_vl_utils import process_vision_info |
|
import torch |
|
from PIL import Image |
|
import subprocess |
|
from datetime import datetime |
|
import numpy as np |
|
import os |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def array_to_image_path(image_array): |
|
if image_array is None: |
|
raise ValueError("No image provided. Please upload an image before submitting.") |
|
|
|
img = Image.fromarray(np.uint8(image_array)) |
|
|
|
|
|
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") |
|
filename = f"image_{timestamp}.png" |
|
|
|
|
|
img.save(filename) |
|
|
|
|
|
full_path = os.path.abspath(filename) |
|
|
|
return full_path |
|
|
|
|
|
models = { |
|
"Qwen/Qwen2-VL-7B-Instruct": Qwen2VLForConditionalGeneration.from_pretrained( |
|
"Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True, torch_dtype="auto" |
|
) |
|
.cuda() |
|
.eval() |
|
} |
|
|
|
processors = { |
|
"Qwen/Qwen2-VL-7B-Instruct": AutoProcessor.from_pretrained( |
|
"Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True |
|
) |
|
} |
|
|
|
DESCRIPTION = "[Qwen2-VL-7B Demo](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct)" |
|
|
|
kwargs = {} |
|
kwargs["torch_dtype"] = torch.bfloat16 |
|
|
|
user_prompt = "<|user|>\n" |
|
assistant_prompt = "<|assistant|>\n" |
|
prompt_suffix = "<|end|>\n" |
|
|
|
|
|
@spaces.GPU |
|
def run_example(image, text_input=None, model_id="Qwen/Qwen2-VL-7B-Instruct"): |
|
image_path = array_to_image_path(image) |
|
|
|
print(image_path) |
|
model = models[model_id] |
|
processor = processors[model_id] |
|
|
|
prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}" |
|
image = Image.fromarray(image).convert("RGB") |
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{ |
|
"type": "image", |
|
"image": image_path, |
|
}, |
|
{"type": "text", "text": text_input}, |
|
], |
|
} |
|
] |
|
|
|
|
|
text = processor.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
image_inputs, video_inputs = process_vision_info(messages) |
|
inputs = processor( |
|
text=[text], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt", |
|
) |
|
inputs = inputs.to("cuda") |
|
|
|
|
|
generated_ids = model.generate(**inputs, max_new_tokens=1024) |
|
generated_ids_trimmed = [ |
|
out_ids[len(in_ids) :] |
|
for in_ids, out_ids in zip(inputs.input_ids, generated_ids) |
|
] |
|
output_text = processor.batch_decode( |
|
generated_ids_trimmed, |
|
skip_special_tokens=True, |
|
clean_up_tokenization_spaces=False, |
|
) |
|
|
|
return output_text[0] |
|
|
|
|
|
css = """ |
|
#output { |
|
height: 500px; |
|
overflow: auto; |
|
border: 1px solid #ccc; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown(DESCRIPTION) |
|
with gr.Tab(label="Qwen2-VL-7B Input"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_img = gr.Image(label="Input Picture") |
|
model_selector = gr.Dropdown( |
|
choices=list(models.keys()), |
|
label="Model", |
|
value="Qwen/Qwen2-VL-7B-Instruct", |
|
) |
|
text_input = gr.Textbox(label="Question") |
|
submit_btn = gr.Button(value="Submit") |
|
with gr.Column(): |
|
output_text = gr.Textbox(label="Output Text") |
|
|
|
submit_btn.click( |
|
run_example, [input_img, text_input, model_selector], [output_text] |
|
) |
|
|
|
demo.queue(api_open=False) |
|
demo.launch(debug=True) |
|
|