--- title: CompVis Stable Diffusion V1 4 emoji: 🏃 colorFrom: pink colorTo: purple sdk: gradio pinned: false license: bigscience-openrail-m sdk_version: 5.12.0 --- pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 # GPU support pip install diffusers transformers flask pillow accelerate from diffusers import StableDiffusionPipeline import torch # Authenticate Hugging Face from huggingface_hub import login login(token="your_hugging_face_token") # Load Stable Diffusion v1-4 model_id = "CompVis/stable-diffusion-v1-4" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") # Use GPU for faster performance prompt = "A luxurious futuristic bathroom with marble walls and golden accents, panoramic views of a tropical jungle, ultra-realistic, 32k resolution" num_steps = 50 # Number of diffusion steps guidance_scale = 7.5 # Higher = more faithful to the prompt # Generate an image image = pipe(prompt, num_inference_steps=num_steps, guidance_scale=guidance_scale).images[0] # Save the image image.save("generated_image.png") from flask import Flask, request, jsonify, send_file from diffusers import StableDiffusionPipeline import torch app = Flask(__name__) # Load Stable Diffusion v1-4 model_id = "CompVis/stable-diffusion-v1-4" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") @app.route("/generate", methods=["POST"]) def generate_image(): data = request.json prompt = data.get("prompt", "A beautiful fantasy landscape") num_steps = data.get("steps", 50) guidance_scale = data.get("guidance_scale", 7.5) # Generate image image = pipe(prompt, num_inference_steps=num_steps, guidance_scale=guidance_scale).images[0] output_path = "output.png" image.save(output_path) return send_file(output_path, mimetype="image/png") if __name__ == "__main__": app.run(host="0.0.0.0", port=5000) Stable Diffusion Generator

Stable Diffusion v1-4 Image Generator










Generated Image:

Generated Image