from typing import Optional, Dict, Any import functools import torch import torch.nn.functional as F from ..util import download_jit from ..transform import (get_crop_and_resize_matrix, get_face_align_matrix, get_face_align_matrix_celebm, make_inverted_tanh_warp_grid, make_tanh_warp_grid) from .base import FaceParser pretrain_settings = { 'lapa/448': { 'url': [ 'https://github.com/FacePerceiver/facer/releases/download/models-v1/face_parsing.farl.lapa.main_ema_136500_jit191.pt', ], 'matrix_src_tag': 'points', 'get_matrix_fn': functools.partial(get_face_align_matrix, target_shape=(448, 448), target_face_scale=1.0), 'get_grid_fn': functools.partial(make_tanh_warp_grid, warp_factor=0.8, warped_shape=(448, 448)), 'get_inv_grid_fn': functools.partial(make_inverted_tanh_warp_grid, warp_factor=0.8, warped_shape=(448, 448)), 'label_names': ['background', 'face', 'rb', 'lb', 're', 'le', 'nose', 'ulip', 'imouth', 'llip', 'hair'] }, 'celebm/448': { 'url': [ 'https://github.com/FacePerceiver/facer/releases/download/models-v1/face_parsing.farl.celebm.main_ema_181500_jit.pt', ], 'matrix_src_tag': 'points', 'get_matrix_fn': functools.partial(get_face_align_matrix_celebm, target_shape=(448, 448)), 'get_grid_fn': functools.partial(make_tanh_warp_grid, warp_factor=0, warped_shape=(448, 448)), 'get_inv_grid_fn': functools.partial(make_inverted_tanh_warp_grid, warp_factor=0, warped_shape=(448, 448)), 'label_names': [ 'background', 'neck', 'face', 'cloth', 'rr', 'lr', 'rb', 'lb', 're', 'le', 'nose', 'imouth', 'llip', 'ulip', 'hair', 'eyeg', 'hat', 'earr', 'neck_l'] } } class FaRLFaceParser(FaceParser): """ The face parsing models from [FaRL](https://github.com/FacePerceiver/FaRL). Please consider citing ```bibtex @article{zheng2021farl, title={General Facial Representation Learning in a Visual-Linguistic Manner}, author={Zheng, Yinglin and Yang, Hao and Zhang, Ting and Bao, Jianmin and Chen, Dongdong and Huang, Yangyu and Yuan, Lu and Chen, Dong and Zeng, Ming and Wen, Fang}, journal={arXiv preprint arXiv:2112.03109}, year={2021} } ``` """ def __init__(self, conf_name: Optional[str] = None, model_path: Optional[str] = None, device=None) -> None: super().__init__() if conf_name is None: conf_name = 'lapa/448' if model_path is None: model_path = pretrain_settings[conf_name]['url'] self.conf_name = conf_name self.net = download_jit(model_path, map_location=device) self.eval() def forward(self, images: torch.Tensor, data: Dict[str, Any]): setting = pretrain_settings[self.conf_name] images = images.float() / 255.0 _, _, h, w = images.shape simages = images[data['image_ids']] matrix = setting['get_matrix_fn'](data[setting['matrix_src_tag']]) grid = setting['get_grid_fn'](matrix=matrix, orig_shape=(h, w)) inv_grid = setting['get_inv_grid_fn'](matrix=matrix, orig_shape=(h, w)) w_images = F.grid_sample( simages, grid, mode='bilinear', align_corners=False) w_seg_logits, _ = self.net(w_images) # (b*n) x c x h x w seg_logits = F.grid_sample( w_seg_logits, inv_grid, mode='bilinear', align_corners=False) data['seg'] = {'logits': seg_logits, 'label_names': setting['label_names']} return data