|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from sklearn.metrics import roc_auc_score |
|
from sklearn.metrics import roc_curve |
|
from sklearn.metrics import auc, accuracy_score, balanced_accuracy_score |
|
from scipy.optimize import brentq |
|
from scipy.interpolate import interp1d |
|
|
|
|
|
def frame_level_acc(labels, y_preds): |
|
return accuracy_score(labels, y_preds) * 100. |
|
|
|
|
|
def frame_level_balanced_acc(labels, y_preds): |
|
return balanced_accuracy_score(labels, y_preds) * 100. |
|
|
|
|
|
def frame_level_auc(labels, preds): |
|
return roc_auc_score(labels, preds) * 100. |
|
|
|
|
|
def frame_level_eer(labels, preds): |
|
|
|
fpr, tpr, thresholds = roc_curve(labels, preds, pos_label=1) |
|
eer = brentq(lambda x: 1. - x - interp1d(fpr, tpr)(x), 0., 1.) |
|
|
|
return eer |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_video_level_label_pred(f_label_list, v_name_list, f_pred_list): |
|
""" |
|
References: |
|
CADDM: https://github.com/megvii-research/CADDM |
|
""" |
|
video_res_dict = dict() |
|
video_pred_list = list() |
|
video_y_pred_list = list() |
|
video_label_list = list() |
|
|
|
for label, video, score in zip(f_label_list, v_name_list, f_pred_list): |
|
if video not in video_res_dict.keys(): |
|
video_res_dict[video] = {"scores": [score], "label": label} |
|
else: |
|
video_res_dict[video]["scores"].append(score) |
|
|
|
for video, res in video_res_dict.items(): |
|
score = sum(res['scores']) / len(res['scores']) |
|
label = res['label'] |
|
video_pred_list.append(score) |
|
video_label_list.append(label) |
|
video_y_pred_list.append(score >= 0.5) |
|
|
|
return video_label_list, video_pred_list, video_y_pred_list |
|
|
|
|
|
def video_level_acc(video_label_list, video_y_pred_list): |
|
return accuracy_score(video_label_list, video_y_pred_list) * 100. |
|
|
|
|
|
def video_level_balanced_acc(video_label_list, video_y_pred_list): |
|
return balanced_accuracy_score(video_label_list, video_y_pred_list) * 100. |
|
|
|
|
|
def video_level_auc(video_label_list, video_pred_list): |
|
return roc_auc_score(video_label_list, video_pred_list) * 100. |
|
|
|
|
|
def video_level_eer(video_label_list, video_pred_list): |
|
|
|
fpr, tpr, thresholds = roc_curve(video_label_list, video_pred_list, pos_label=1) |
|
v_eer = brentq(lambda x: 1. - x - interp1d(fpr, tpr)(x), 0., 1.) |
|
|
|
return v_eer |
|
|