File size: 15,283 Bytes
d4e7f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
# -*- coding: utf-8 -*-
# Author: Gaojian Wang@ZJUICSR
# --------------------------------------------------------
# This source code is licensed under the Attribution-NonCommercial 4.0 International License.
# You can find the license in the LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
from __future__ import print_function
import torch
import torch.nn as nn
import math
class SimSiamLoss(nn.Module):
def __init__(self):
super(SimSiamLoss, self).__init__()
self.criterion = nn.CosineSimilarity(dim=1)
def forward(self, cl_features):
if len(cl_features.shape) < 3:
raise ValueError('`features` needs to be [bsz, n_views, ...],'
'at least 3 dimensions are required')
if len(cl_features.shape) > 3:
cl_features = cl_features.view(cl_features.shape[0], cl_features.shape[1], -1) # [BS, 2, feat_cl_dim]
cl_features_1 = cl_features[:, 0] # [BS, feat_cl_dim]
cl_features_2 = cl_features[:, 1] # [BS, feat_cl_dim]
loss = -(self.criterion(cl_features_1, cl_features_2).mean()) * 0.5
# if not math.isfinite(loss):
# print(cl_features_1, '\n', cl_features_2)
# print(self.criterion(cl_features_1, cl_features_2))
return loss
class BYOLLoss(nn.Module):
def __init__(self):
super(BYOLLoss, self).__init__()
@staticmethod
def forward(cl_features):
if len(cl_features.shape) < 3:
raise ValueError('`features` needs to be [bsz, n_views, ...],'
'at least 3 dimensions are required')
if len(cl_features.shape) > 3:
cl_features = cl_features.view(cl_features.shape[0], cl_features.shape[1], -1) # [BS, 2, feat_cl_dim]
cl_features_1 = cl_features[:, 0] # [BS, feat_cl_dim]
cl_features_2 = cl_features[:, 1] # [BS, feat_cl_dim]
loss = 2 - 2 * (cl_features_1 * cl_features_2).sum(dim=-1)
# loss = 1 - (cl_features_1 * cl_features_2).sum(dim=-1)
loss = loss.mean()
if not math.isfinite(loss):
print(cl_features_1, '\n', cl_features_2)
print(2 - 2 * (cl_features_1 * cl_features_2).sum(dim=-1))
return loss
# different implementation of InfoNCELoss, including MOCOV3Loss; SupConLoss
class InfoNCELoss(nn.Module):
def __init__(self, temperature=0.1, contrast_sample='all'):
"""
from CMAE: https://github.com/ZhichengHuang/CMAE/issues/5
:param temperature: 0.1 0.5 1.0, 1.5 2.0
"""
super(InfoNCELoss, self).__init__()
self.temperature = temperature
self.criterion = nn.CrossEntropyLoss()
self.contrast_sample = contrast_sample
def forward(self, cl_features):
"""
Args:
:param cl_features: : hidden vector of shape [bsz, n_views, ...]
Returns:
A loss scalar.
"""
device = (torch.device('cuda')
if cl_features.is_cuda
else torch.device('cpu'))
if len(cl_features.shape) < 3:
raise ValueError('`features` needs to be [bsz, n_views, ...],'
'at least 3 dimensions are required')
if len(cl_features.shape) > 3:
cl_features = cl_features.view(cl_features.shape[0], cl_features.shape[1], -1) # [BS, 2, feat_cl_dim]
cl_features_1 = cl_features[:, 0] # [BS, feat_cl_dim]
cl_features_2 = cl_features[:, 1] # [BS, feat_cl_dim]
score_all = torch.matmul(cl_features_1, cl_features_2.transpose(1, 0)) # [BS, BS]
score_all = score_all / self.temperature
bs = score_all.size(0)
if self.contrast_sample == 'all':
score = score_all
elif self.contrast_sample == 'positive':
mask = torch.eye(bs, dtype=torch.float).to(device) # torch.Size([BS, BS])
score = score_all * mask
else:
raise ValueError('Contrastive sample: all{pos&neg} or positive(positive)')
# label = (torch.arange(bs, dtype=torch.long) +
# bs * torch.distributed.get_rank()).to(device)
label = torch.arange(bs, dtype=torch.long).to(device)
loss = 2 * self.temperature * self.criterion(score, label)
if not math.isfinite(loss):
print(cl_features_1, '\n', cl_features_2)
print(score_all, '\n', score, '\n', mask)
return loss
class MOCOV3Loss(nn.Module):
def __init__(self, temperature=0.1):
super(MOCOV3Loss, self).__init__()
self.temperature = temperature
def forward(self, cl_features):
if len(cl_features.shape) < 3:
raise ValueError('`features` needs to be [bsz, n_views, ...],'
'at least 3 dimensions are required')
if len(cl_features.shape) > 3:
cl_features = cl_features.view(cl_features.shape[0], cl_features.shape[1], -1) # [BS, 2, feat_cl_dim]
cl_features_1 = cl_features[:, 0] # [BS, feat_cl_dim]
cl_features_2 = cl_features[:, 1] # [BS, feat_cl_dim]
# normalize
cl_features_1 = nn.functional.normalize(cl_features_1, dim=1)
cl_features_2 = nn.functional.normalize(cl_features_2, dim=1)
# Einstein sum is more intuitive
logits = torch.einsum('nc,mc->nm', [cl_features_1, cl_features_2]) / self.temperature
N = logits.shape[0]
labels = (torch.arange(N, dtype=torch.long)).cuda()
return nn.CrossEntropyLoss()(logits, labels) * (2 * self.temperature)
class SupConLoss(nn.Module):
"""
from: https://github.com/HobbitLong/SupContrast
Supervised Contrastive Learning: https://arxiv.org/pdf/2004.11362.pdf.
It also supports the unsupervised contrastive loss in SimCLR"""
def __init__(self, temperature=0.1, contrast_mode='all', contrast_sample='all',
base_temperature=0.1):
super(SupConLoss, self).__init__()
self.temperature = temperature
self.contrast_mode = contrast_mode
self.contrast_sample = contrast_sample
self.base_temperature = base_temperature
def forward(self, features, labels=None, mask=None):
"""Compute loss for model. If both `labels` and `mask` are None,
it degenerates to SimCLR unsupervised loss:
https://arxiv.org/pdf/2002.05709.pdf
Args:
features: hidden vector of shape [bsz, n_views, ...].
labels: ground truth of shape [bsz].
mask: contrastive mask of shape [bsz, bsz], mask_{i,j}=1 if sample j
has the same class as sample i. Can be asymmetric.
Returns:
A loss scalar.
"""
device = (torch.device('cuda')
if features.is_cuda
else torch.device('cpu'))
if len(features.shape) < 3:
raise ValueError('`features` needs to be [bsz, n_views, ...],'
'at least 3 dimensions are required')
if len(features.shape) > 3:
features = features.view(features.shape[0], features.shape[1], -1) # [BS, 2, feat_cl_dim]
batch_size = features.shape[0]
if labels is not None and mask is not None:
raise ValueError('Cannot define both `labels` and `mask`')
elif labels is None and mask is None:
mask = torch.eye(batch_size, dtype=torch.float32).to(device) # torch.Size([BS, BS])
elif labels is not None:
labels = labels.contiguous().view(-1, 1)
if labels.shape[0] != batch_size:
raise ValueError('Num of labels does not match num of features')
mask = torch.eq(labels, labels.T).float().to(device)
else:
mask = mask.float().to(device)
contrast_count = features.shape[1] # contrast_count(2)
contrast_feature = torch.cat(torch.unbind(features, dim=1), dim=0) # [BS*contrast_count, D]
if self.contrast_mode == 'one':
anchor_feature = features[:, 0] # [BS, D]
anchor_count = 1
elif self.contrast_mode == 'all':
anchor_feature = contrast_feature # [BS*contrast_count, D]
anchor_count = contrast_count
else:
raise ValueError('Unknown mode: {}'.format(self.contrast_mode))
# compute logits
anchor_dot_contrast = torch.div(
torch.matmul(anchor_feature, contrast_feature.T),
self.temperature) # [BS*contrast_count, BS*contrast_count]
# for numerical stability
logits_max, _ = torch.max(anchor_dot_contrast, dim=1, keepdim=True) # [BS*contrast_count, 1]
logits = anchor_dot_contrast - logits_max.detach() # [BS*contrast_count, BS*contrast_count]
# tile mask
mask = mask.repeat(anchor_count, contrast_count) # [BS*anchor_count, BS*contrast_count]
# mask-out self-contrast cases
logits_mask = torch.scatter(
torch.ones_like(mask),
1,
torch.arange(batch_size * anchor_count).view(-1, 1).to(device),
0
) # [BS*anchor_count, BS*contrast_count]
mask = mask * logits_mask # [BS*anchor_count, BS*contrast_count]
"""
logits_mask is used to get the denominator(positives and negatives).
mask is used to get the numerator(positives). mask is applied to log_prob.
"""
# compute log_prob,logits_mask is contrast anchor with both positives and negatives
exp_logits = torch.exp(logits) * logits_mask # [BS*anchor_count, BS*contrast_count]
# compute log_prob,logits_mask is contrast anchor with negatives, i.e., denominator only negatives contrast:
# exp_logits = torch.exp(logits) * (logits_mask-mask)
if self.contrast_sample == 'all':
log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True)) # [BS*anchor_count, BS*anchor_count]
# compute mean of log-likelihood over positive
mean_log_prob_pos = (mask * log_prob).sum(1) / mask.sum(1) # [BS*anchor_count]
elif self.contrast_sample == 'positive':
mean_log_prob_pos = (mask * logits).sum(1) / mask.sum(1)
else:
raise ValueError('Contrastive sample: all{pos&neg} or positive(positive)')
# loss
loss = - (self.temperature / self.base_temperature) * mean_log_prob_pos
loss = loss.view(anchor_count, batch_size).mean()
return loss
class InfoNCELossPatchLevel(nn.Module):
"""
test: ref ConMIM: https://github.com/TencentARC/ConMIM.
"""
def __init__(self, temperature=0.1, contrast_sample='all'):
"""
:param temperature: 0.1 0.5 1.0, 1.5 2.0
"""
super(InfoNCELossPatchLevel, self).__init__()
self.temperature = temperature
self.criterion = nn.CrossEntropyLoss()
self.contrast_sample = contrast_sample
self.facial_region_group = [
[2, 3], # eyebrows
[4, 5], # eyes
[6], # nose
[7, 8, 9], # mouth
[10, 1, 0], # face boundaries
[10], # hair
[1], # facial skin
[0] # background
]
def forward(self, cl_features, parsing_map=None):
"""
Args:
:param parsing_map:
:param cl_features: : hidden vector of shape [bsz, n_views, ...]
Returns:
A loss scalar.
"""
device = (torch.device('cuda')
if cl_features.is_cuda
else torch.device('cpu'))
if len(cl_features.shape) < 4:
raise ValueError('`features` needs to be [bsz, n_views, n_cl_patches, ...],'
'at least 4 dimensions are required')
if len(cl_features.shape) > 4:
cl_features = cl_features.view(cl_features.shape[0], cl_features.shape[1], cl_features.shape[2], -1)
# [BS, 2, num_cl_patches, feat_cl_dim]
cl_features_1 = cl_features[:, 0]
cl_features_2 = cl_features[:, 1]
score = torch.matmul(cl_features_1, cl_features_2.permute(0, 2, 1)) # [BS, num_cl_patches, num_cl_patches]
score = score / self.temperature
bs = score.size(0)
num_cl_patches = score.size(1)
if self.contrast_sample == 'all':
score = score
elif self.contrast_sample == 'positive':
mask = torch.eye(num_cl_patches, dtype=torch.float32) # torch.Size([num_cl_patches, num_cl_patches])
mask_batch = mask.unsqueeze(0).expand(bs, -1).to(device) # [bs, num_cl_patches, num_cl_patches]
score = score*mask_batch
elif self.contrast_sample == 'region':
cl_features_1_fr = []
cl_features_2_fr = []
for facial_region_index in self.facial_region_group:
fr_mask = (parsing_map == facial_region_index).unsqueeze(2).expand(-1, -1, cl_features_1.size(-1))
cl_features_1_fr.append((cl_features_1 * fr_mask).mean(dim=1, keepdim=False))
cl_features_2_fr.append((cl_features_1 * fr_mask).mean(dim=1, keepdim=False))
cl_features_1_fr = torch.stack(cl_features_1_fr, dim=1)
cl_features_2_fr = torch.stack(cl_features_2_fr, dim=1)
score = torch.matmul(cl_features_1_fr, cl_features_2_fr.permute(0, 2, 1)) # [BS, 8, 8]
score = score / self.temperature
# mask = torch.eye(cl_features_1_fr.size(1), dtype=torch.bool)
# torch.Size([cl_features_1_fr.size(1), cl_features_1_fr.size(1)])
# mask_batch = mask.unsqueeze(0).expand(bs, -1).to(device)
# [bs, cl_features_1_fr.size(1), cl_features_1_fr.size(1)]
# score = score*mask_batch
label = torch.arange(cl_features_1_fr.size(1), dtype=torch.long).to(device)
labels_batch = label.unsqueeze(0).expand(bs, -1)
loss = 2 * self.temperature * self.criterion(score, labels_batch)
return loss
else:
raise ValueError('Contrastive sample: all{pos&neg} or positive(positive)')
# label = (torch.arange(bs, dtype=torch.long) +
# bs * torch.distributed.get_rank()).to(device)
label = torch.arange(num_cl_patches, dtype=torch.long).to(device)
labels_batch = label.unsqueeze(0).expand(bs, -1)
loss = 2 * self.temperature * self.criterion(score, labels_batch)
return loss
class MSELoss(nn.Module):
"""
test: unused
"""
def __init__(self):
super(MSELoss, self).__init__()
@staticmethod
def forward(cl_features):
if len(cl_features.shape) < 3:
raise ValueError('`features` needs to be [bsz, n_views, n_patches, ...],'
'at least 3 dimensions are required')
if len(cl_features.shape) > 3:
cl_features = cl_features.view(cl_features.shape[0], cl_features.shape[1], -1) # [BS, 2, feat_cl_dim]
cl_features_1 = cl_features[:, 0].float() # [BS, feat_cl_dim]
cl_features_2 = cl_features[:, 1].float() # [BS, feat_cl_dim]
return torch.nn.functional.mse_loss(cl_features_1, cl_features_2, reduction='mean')
|