File size: 15,283 Bytes
d4e7f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
# -*- coding: utf-8 -*-
# Author: Gaojian Wang@ZJUICSR
# --------------------------------------------------------
# This source code is licensed under the Attribution-NonCommercial 4.0 International License.
# You can find the license in the LICENSE file in the root directory of this source tree.
# --------------------------------------------------------

from __future__ import print_function

import torch
import torch.nn as nn
import math


class SimSiamLoss(nn.Module):
    def __init__(self):
        super(SimSiamLoss, self).__init__()
        self.criterion = nn.CosineSimilarity(dim=1)

    def forward(self, cl_features):

        if len(cl_features.shape) < 3:
            raise ValueError('`features` needs to be [bsz, n_views, ...],'
                             'at least 3 dimensions are required')
        if len(cl_features.shape) > 3:
            cl_features = cl_features.view(cl_features.shape[0], cl_features.shape[1], -1)  # [BS, 2, feat_cl_dim]

        cl_features_1 = cl_features[:, 0]  # [BS, feat_cl_dim]
        cl_features_2 = cl_features[:, 1]  # [BS, feat_cl_dim]
        loss = -(self.criterion(cl_features_1, cl_features_2).mean()) * 0.5

        # if not math.isfinite(loss):
        #     print(cl_features_1, '\n', cl_features_2)
        #     print(self.criterion(cl_features_1, cl_features_2))

        return loss


class BYOLLoss(nn.Module):
    def __init__(self):
        super(BYOLLoss, self).__init__()

    @staticmethod
    def forward(cl_features):

        if len(cl_features.shape) < 3:
            raise ValueError('`features` needs to be [bsz, n_views, ...],'
                             'at least 3 dimensions are required')
        if len(cl_features.shape) > 3:
            cl_features = cl_features.view(cl_features.shape[0], cl_features.shape[1], -1)  # [BS, 2, feat_cl_dim]

        cl_features_1 = cl_features[:, 0]  # [BS, feat_cl_dim]
        cl_features_2 = cl_features[:, 1]  # [BS, feat_cl_dim]
        loss = 2 - 2 * (cl_features_1 * cl_features_2).sum(dim=-1)
        # loss = 1 - (cl_features_1 * cl_features_2).sum(dim=-1)
        loss = loss.mean()

        if not math.isfinite(loss):
            print(cl_features_1, '\n', cl_features_2)
            print(2 - 2 * (cl_features_1 * cl_features_2).sum(dim=-1))

        return loss


# different implementation of InfoNCELoss, including MOCOV3Loss; SupConLoss
class InfoNCELoss(nn.Module):
    def __init__(self, temperature=0.1, contrast_sample='all'):
        """
        from CMAE: https://github.com/ZhichengHuang/CMAE/issues/5
        :param temperature: 0.1 0.5 1.0, 1.5 2.0
        """
        super(InfoNCELoss, self).__init__()
        self.temperature = temperature
        self.criterion = nn.CrossEntropyLoss()
        self.contrast_sample = contrast_sample

    def forward(self, cl_features):
        """
        Args:
            :param cl_features: : hidden vector of shape [bsz, n_views, ...]
        Returns:
            A loss scalar.
        """
        device = (torch.device('cuda')
                  if cl_features.is_cuda
                  else torch.device('cpu'))

        if len(cl_features.shape) < 3:
            raise ValueError('`features` needs to be [bsz, n_views, ...],'
                             'at least 3 dimensions are required')
        if len(cl_features.shape) > 3:
            cl_features = cl_features.view(cl_features.shape[0], cl_features.shape[1], -1)  # [BS, 2, feat_cl_dim]

        cl_features_1 = cl_features[:, 0]  # [BS, feat_cl_dim]
        cl_features_2 = cl_features[:, 1]  # [BS, feat_cl_dim]
        score_all = torch.matmul(cl_features_1, cl_features_2.transpose(1, 0))  # [BS, BS]
        score_all = score_all / self.temperature
        bs = score_all.size(0)

        if self.contrast_sample == 'all':
            score = score_all
        elif self.contrast_sample == 'positive':
            mask = torch.eye(bs, dtype=torch.float).to(device)  # torch.Size([BS, BS])
            score = score_all * mask
        else:
            raise ValueError('Contrastive sample: all{pos&neg} or positive(positive)')

        # label = (torch.arange(bs, dtype=torch.long) +
        #          bs * torch.distributed.get_rank()).to(device)
        label = torch.arange(bs, dtype=torch.long).to(device)

        loss = 2 * self.temperature * self.criterion(score, label)

        if not math.isfinite(loss):
            print(cl_features_1, '\n', cl_features_2)
            print(score_all, '\n', score, '\n', mask)

        return loss


class MOCOV3Loss(nn.Module):
    def __init__(self, temperature=0.1):
        super(MOCOV3Loss, self).__init__()
        self.temperature = temperature

    def forward(self, cl_features):

        if len(cl_features.shape) < 3:
            raise ValueError('`features` needs to be [bsz, n_views, ...],'
                             'at least 3 dimensions are required')
        if len(cl_features.shape) > 3:
            cl_features = cl_features.view(cl_features.shape[0], cl_features.shape[1], -1)  # [BS, 2, feat_cl_dim]

        cl_features_1 = cl_features[:, 0]  # [BS, feat_cl_dim]
        cl_features_2 = cl_features[:, 1]  # [BS, feat_cl_dim]

        # normalize
        cl_features_1 = nn.functional.normalize(cl_features_1, dim=1)
        cl_features_2 = nn.functional.normalize(cl_features_2, dim=1)
        # Einstein sum is more intuitive
        logits = torch.einsum('nc,mc->nm', [cl_features_1, cl_features_2]) / self.temperature
        N = logits.shape[0]
        labels = (torch.arange(N, dtype=torch.long)).cuda()
        return nn.CrossEntropyLoss()(logits, labels) * (2 * self.temperature)


class SupConLoss(nn.Module):
    """
    from: https://github.com/HobbitLong/SupContrast
    Supervised Contrastive Learning: https://arxiv.org/pdf/2004.11362.pdf.
    It also supports the unsupervised contrastive loss in SimCLR"""
    def __init__(self, temperature=0.1, contrast_mode='all', contrast_sample='all',
                 base_temperature=0.1):
        super(SupConLoss, self).__init__()
        self.temperature = temperature
        self.contrast_mode = contrast_mode
        self.contrast_sample = contrast_sample
        self.base_temperature = base_temperature

    def forward(self, features, labels=None, mask=None):
        """Compute loss for model. If both `labels` and `mask` are None,
        it degenerates to SimCLR unsupervised loss:
        https://arxiv.org/pdf/2002.05709.pdf

        Args:
            features: hidden vector of shape [bsz, n_views, ...].
            labels: ground truth of shape [bsz].
            mask: contrastive mask of shape [bsz, bsz], mask_{i,j}=1 if sample j
                has the same class as sample i. Can be asymmetric.
        Returns:
            A loss scalar.
        """
        device = (torch.device('cuda')
                  if features.is_cuda
                  else torch.device('cpu'))

        if len(features.shape) < 3:
            raise ValueError('`features` needs to be [bsz, n_views, ...],'
                             'at least 3 dimensions are required')
        if len(features.shape) > 3:
            features = features.view(features.shape[0], features.shape[1], -1)  # [BS, 2, feat_cl_dim]

        batch_size = features.shape[0]
        if labels is not None and mask is not None:
            raise ValueError('Cannot define both `labels` and `mask`')
        elif labels is None and mask is None:
            mask = torch.eye(batch_size, dtype=torch.float32).to(device)  # torch.Size([BS, BS])
        elif labels is not None:
            labels = labels.contiguous().view(-1, 1)
            if labels.shape[0] != batch_size:
                raise ValueError('Num of labels does not match num of features')
            mask = torch.eq(labels, labels.T).float().to(device)
        else:
            mask = mask.float().to(device)

        contrast_count = features.shape[1]  # contrast_count(2)
        contrast_feature = torch.cat(torch.unbind(features, dim=1), dim=0)  # [BS*contrast_count, D]
        if self.contrast_mode == 'one':
            anchor_feature = features[:, 0]  # [BS, D]
            anchor_count = 1
        elif self.contrast_mode == 'all':
            anchor_feature = contrast_feature  # [BS*contrast_count, D]
            anchor_count = contrast_count
        else:
            raise ValueError('Unknown mode: {}'.format(self.contrast_mode))

        # compute logits
        anchor_dot_contrast = torch.div(
            torch.matmul(anchor_feature, contrast_feature.T),
            self.temperature)  # [BS*contrast_count, BS*contrast_count]
        # for numerical stability
        logits_max, _ = torch.max(anchor_dot_contrast, dim=1, keepdim=True)  # [BS*contrast_count, 1]
        logits = anchor_dot_contrast - logits_max.detach()  # [BS*contrast_count, BS*contrast_count]

        # tile mask
        mask = mask.repeat(anchor_count, contrast_count)  # [BS*anchor_count, BS*contrast_count]
        # mask-out self-contrast cases
        logits_mask = torch.scatter(
            torch.ones_like(mask),
            1,
            torch.arange(batch_size * anchor_count).view(-1, 1).to(device),
            0
        )  # [BS*anchor_count, BS*contrast_count]
        mask = mask * logits_mask  # [BS*anchor_count, BS*contrast_count]

        """
        logits_mask is used to get the denominator(positives and negatives).
        mask is used to get the numerator(positives). mask is applied to log_prob.
        """

        # compute log_prob,logits_mask is contrast anchor with both positives and negatives
        exp_logits = torch.exp(logits) * logits_mask  # [BS*anchor_count, BS*contrast_count]
        # compute log_prob,logits_mask is contrast anchor with negatives, i.e., denominator only negatives contrast:
        # exp_logits = torch.exp(logits) * (logits_mask-mask)

        if self.contrast_sample == 'all':
            log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True))  # [BS*anchor_count, BS*anchor_count]
            # compute mean of log-likelihood over positive
            mean_log_prob_pos = (mask * log_prob).sum(1) / mask.sum(1)  # [BS*anchor_count]
        elif self.contrast_sample == 'positive':
            mean_log_prob_pos = (mask * logits).sum(1) / mask.sum(1)
        else:
            raise ValueError('Contrastive sample: all{pos&neg} or positive(positive)')

        # loss
        loss = - (self.temperature / self.base_temperature) * mean_log_prob_pos
        loss = loss.view(anchor_count, batch_size).mean()

        return loss


class InfoNCELossPatchLevel(nn.Module):
    """
    test: ref ConMIM: https://github.com/TencentARC/ConMIM.
    """
    def __init__(self, temperature=0.1, contrast_sample='all'):
        """
        :param temperature: 0.1 0.5 1.0, 1.5 2.0
        """
        super(InfoNCELossPatchLevel, self).__init__()
        self.temperature = temperature
        self.criterion = nn.CrossEntropyLoss()
        self.contrast_sample = contrast_sample

        self.facial_region_group = [
            [2, 3],  # eyebrows
            [4, 5],  # eyes
            [6],  # nose
            [7, 8, 9],  # mouth
            [10, 1, 0],  # face boundaries
            [10],  # hair
            [1],  # facial skin
            [0]  # background
        ]

    def forward(self, cl_features, parsing_map=None):
        """
        Args:
            :param parsing_map:
            :param cl_features: : hidden vector of shape [bsz, n_views, ...]
        Returns:
            A loss scalar.
        """
        device = (torch.device('cuda')
                  if cl_features.is_cuda
                  else torch.device('cpu'))

        if len(cl_features.shape) < 4:
            raise ValueError('`features` needs to be [bsz, n_views, n_cl_patches, ...],'
                             'at least 4 dimensions are required')
        if len(cl_features.shape) > 4:
            cl_features = cl_features.view(cl_features.shape[0], cl_features.shape[1], cl_features.shape[2], -1)
            # [BS, 2, num_cl_patches, feat_cl_dim]

        cl_features_1 = cl_features[:, 0]
        cl_features_2 = cl_features[:, 1]
        score = torch.matmul(cl_features_1, cl_features_2.permute(0, 2, 1))  # [BS, num_cl_patches, num_cl_patches]
        score = score / self.temperature
        bs = score.size(0)
        num_cl_patches = score.size(1)

        if self.contrast_sample == 'all':
            score = score
        elif self.contrast_sample == 'positive':
            mask = torch.eye(num_cl_patches, dtype=torch.float32)  # torch.Size([num_cl_patches, num_cl_patches])
            mask_batch = mask.unsqueeze(0).expand(bs, -1).to(device)  # [bs, num_cl_patches, num_cl_patches]
            score = score*mask_batch
        elif self.contrast_sample == 'region':
            cl_features_1_fr = []
            cl_features_2_fr = []
            for facial_region_index in self.facial_region_group:
                fr_mask = (parsing_map == facial_region_index).unsqueeze(2).expand(-1, -1, cl_features_1.size(-1))
                cl_features_1_fr.append((cl_features_1 * fr_mask).mean(dim=1, keepdim=False))
                cl_features_2_fr.append((cl_features_1 * fr_mask).mean(dim=1, keepdim=False))
            cl_features_1_fr = torch.stack(cl_features_1_fr, dim=1)
            cl_features_2_fr = torch.stack(cl_features_2_fr, dim=1)
            score = torch.matmul(cl_features_1_fr, cl_features_2_fr.permute(0, 2, 1))  # [BS, 8, 8]
            score = score / self.temperature
            # mask = torch.eye(cl_features_1_fr.size(1), dtype=torch.bool)
            # torch.Size([cl_features_1_fr.size(1), cl_features_1_fr.size(1)])
            # mask_batch = mask.unsqueeze(0).expand(bs, -1).to(device)
            # [bs, cl_features_1_fr.size(1), cl_features_1_fr.size(1)]
            # score = score*mask_batch
            label = torch.arange(cl_features_1_fr.size(1), dtype=torch.long).to(device)
            labels_batch = label.unsqueeze(0).expand(bs, -1)
            loss = 2 * self.temperature * self.criterion(score, labels_batch)
            return loss
        else:
            raise ValueError('Contrastive sample: all{pos&neg} or positive(positive)')

        # label = (torch.arange(bs, dtype=torch.long) +
        #          bs * torch.distributed.get_rank()).to(device)
        label = torch.arange(num_cl_patches, dtype=torch.long).to(device)
        labels_batch = label.unsqueeze(0).expand(bs, -1)

        loss = 2 * self.temperature * self.criterion(score, labels_batch)

        return loss


class MSELoss(nn.Module):
    """
    test: unused
    """
    def __init__(self):
        super(MSELoss, self).__init__()

    @staticmethod
    def forward(cl_features):

        if len(cl_features.shape) < 3:
            raise ValueError('`features` needs to be [bsz, n_views, n_patches, ...],'
                             'at least 3 dimensions are required')
        if len(cl_features.shape) > 3:
            cl_features = cl_features.view(cl_features.shape[0], cl_features.shape[1], -1)  # [BS, 2, feat_cl_dim]

        cl_features_1 = cl_features[:, 0].float()  # [BS, feat_cl_dim]
        cl_features_2 = cl_features[:, 1].float()  # [BS, feat_cl_dim]

        return torch.nn.functional.mse_loss(cl_features_1, cl_features_2, reduction='mean')