File size: 13,462 Bytes
d4e7f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
from typing import List, Dict, Callable, Tuple, Optional
import torch
import torch.nn.functional as F
import functools
import numpy as np


def get_crop_and_resize_matrix(
        box: torch.Tensor, target_shape: Tuple[int, int],
        target_face_scale: float = 1.0, make_square_crop: bool = True,
        offset_xy: Optional[Tuple[float, float]] = None, align_corners: bool = True,
        offset_box_coords: bool = False) -> torch.Tensor:
    """
    Args:
        box: b x 4(x1, y1, x2, y2)
        align_corners (bool): Set this to `True` only if the box you give has coordinates
            ranging from `0` to `h-1` or `w-1`.

        offset_box_coords (bool): Set this to `True` if the box you give has coordinates
            ranging from `0` to `h` or `w`. 

            Set this to `False` if the box coordinates range from `-0.5` to `h-0.5` or `w-0.5`.

            If the box coordinates range from `0` to `h-1` or `w-1`, set `align_corners=True`.

    Returns:
        torch.Tensor: b x 3 x 3.
    """
    if offset_xy is None:
        offset_xy = (0.0, 0.0)

    x1, y1, x2, y2 = box.split(1, dim=1)  # b x 1
    cx = (x1 + x2) / 2 + offset_xy[0]
    cy = (y1 + y2) / 2 + offset_xy[1]
    rx = (x2 - x1) / 2 / target_face_scale
    ry = (y2 - y1) / 2 / target_face_scale
    if make_square_crop:
        rx = ry = torch.maximum(rx, ry)

    x1, y1, x2, y2 = cx - rx, cy - ry, cx + rx, cy + ry

    h, w, *_ = target_shape

    zeros_pl = torch.zeros_like(x1)
    ones_pl = torch.ones_like(x1)

    if align_corners:
        # x -> (x - x1) / (x2 - x1) * (w - 1)
        # y -> (y - y1) / (y2 - y1) * (h - 1)
        ax = 1.0 / (x2 - x1) * (w - 1)
        ay = 1.0 / (y2 - y1) * (h - 1)
        matrix = torch.cat([
            ax, zeros_pl, -x1 * ax,
            zeros_pl, ay, -y1 * ay,
            zeros_pl, zeros_pl, ones_pl
        ], dim=1).reshape(-1, 3, 3)  # b x 3 x 3
    else:
        if offset_box_coords:
            # x1, x2 \in [0, w], y1, y2 \in [0, h]
            # first we should offset x1, x2, y1, y2 to be ranging in
            # [-0.5, w-0.5] and [-0.5, h-0.5]
            # so to convert these pixel coordinates into boundary coordinates.
            x1, x2, y1, y2 = x1-0.5, x2-0.5, y1-0.5, y2-0.5

        # x -> (x - x1) / (x2 - x1) * w - 0.5
        # y -> (y - y1) / (y2 - y1) * h - 0.5
        ax = 1.0 / (x2 - x1) * w
        ay = 1.0 / (y2 - y1) * h
        matrix = torch.cat([
            ax, zeros_pl, -x1 * ax - 0.5*ones_pl,
            zeros_pl, ay, -y1 * ay - 0.5*ones_pl,
            zeros_pl, zeros_pl, ones_pl
        ], dim=1).reshape(-1, 3, 3)  # b x 3 x 3
    return matrix


def get_similarity_transform_matrix(
        from_pts: torch.Tensor, to_pts: torch.Tensor) -> torch.Tensor:
    """
    Args:
        from_pts, to_pts: b x n x 2

    Returns:
        torch.Tensor: b x 3 x 3
    """
    mfrom = from_pts.mean(dim=1, keepdim=True)  # b x 1 x 2
    mto = to_pts.mean(dim=1, keepdim=True)  # b x 1 x 2

    a1 = (from_pts - mfrom).square().sum([1, 2], keepdim=False)  # b
    c1 = ((to_pts - mto) * (from_pts - mfrom)).sum([1, 2], keepdim=False)  # b

    to_delta = to_pts - mto
    from_delta = from_pts - mfrom
    c2 = (to_delta[:, :, 0] * from_delta[:, :, 1] - to_delta[:,
          :, 1] * from_delta[:, :, 0]).sum([1], keepdim=False)  # b

    a = c1 / a1
    b = c2 / a1
    dx = mto[:, 0, 0] - a * mfrom[:, 0, 0] - b * mfrom[:, 0, 1]  # b
    dy = mto[:, 0, 1] + b * mfrom[:, 0, 0] - a * mfrom[:, 0, 1]  # b

    ones_pl = torch.ones_like(a1)
    zeros_pl = torch.zeros_like(a1)

    return torch.stack([
        a, b, dx,
        -b, a, dy,
        zeros_pl, zeros_pl, ones_pl,
    ], dim=-1).reshape(-1, 3, 3)


@functools.lru_cache()
def _standard_face_pts():
    pts = torch.tensor([
        196.0, 226.0,
        316.0, 226.0,
        256.0, 286.0,
        220.0, 360.4,
        292.0, 360.4], dtype=torch.float32) / 256.0 - 1.0
    return torch.reshape(pts, (5, 2))


def get_face_align_matrix(
        face_pts: torch.Tensor, target_shape: Tuple[int, int],
        target_face_scale: float = 1.0, offset_xy: Optional[Tuple[float, float]] = None,
        target_pts: Optional[torch.Tensor] = None):

    if target_pts is None:
        with torch.no_grad():
            std_pts = _standard_face_pts().to(face_pts)  # [-1 1]
            h, w, *_ = target_shape
            target_pts = (std_pts * target_face_scale + 1) * \
                torch.tensor([w-1, h-1]).to(face_pts) / 2.0
            if offset_xy is not None:
                target_pts[:, 0] += offset_xy[0]
                target_pts[:, 1] += offset_xy[1]
    else:
        target_pts = target_pts.to(face_pts)

    if target_pts.dim() == 2:
        target_pts = target_pts.unsqueeze(0)
    if target_pts.size(0) == 1:
        target_pts = target_pts.broadcast_to(face_pts.shape)

    assert target_pts.shape == face_pts.shape

    return get_similarity_transform_matrix(face_pts, target_pts)


def rot90(v):
    return np.array([-v[1], v[0]])


def get_quad(lm: torch.Tensor):
    # N,2
    lm = lm.detach().cpu().numpy()
    # Choose oriented crop rectangle.
    eye_avg = (lm[0] + lm[1]) * 0.5 + 0.5
    mouth_avg = (lm[3] + lm[4]) * 0.5 + 0.5
    eye_to_eye = lm[1] - lm[0]
    eye_to_mouth = mouth_avg - eye_avg
    x = eye_to_eye - rot90(eye_to_mouth)
    x /= np.hypot(*x)
    x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
    y = rot90(x)
    c = eye_avg + eye_to_mouth * 0.1
    quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
    quad_for_coeffs = quad[[0,3, 2,1]] #  顺序改一下
    return torch.from_numpy(quad_for_coeffs).float()


def get_face_align_matrix_celebm(
        face_pts: torch.Tensor, target_shape: Tuple[int, int]):

    face_pts = torch.stack([get_quad(pts) for pts in face_pts], dim=0).to(face_pts)

    assert target_shape[0] == target_shape[1]
    target_size  = target_shape[0]
    target_pts = torch.as_tensor([[0, 0], [target_size,0], [target_size, target_size], [0, target_size]]).to(face_pts)

    if target_pts.dim() == 2:
        target_pts = target_pts.unsqueeze(0)
    if target_pts.size(0) == 1:
        target_pts = target_pts.broadcast_to(face_pts.shape)

    assert target_pts.shape == face_pts.shape

    return get_similarity_transform_matrix(face_pts, target_pts)

@functools.lru_cache(maxsize=128)
def _meshgrid(h, w) -> Tuple[torch.Tensor, torch.Tensor]:
    yy, xx = torch.meshgrid(torch.arange(h).float(),
                            torch.arange(w).float(),
                            indexing='ij')
    return yy, xx


def _forge_grid(batch_size: int, device: torch.device,
                output_shape: Tuple[int, int],
                fn: Callable[[torch.Tensor], torch.Tensor]
                ) -> Tuple[torch.Tensor, torch.Tensor]:
    """ Forge transform maps with a given function `fn`.

    Args:
        output_shape (tuple): (b, h, w, ...).
        fn (Callable[[torch.Tensor], torch.Tensor]): The function that accepts 
            a bxnx2 array and outputs the transformed bxnx2 array. Both input 
            and output store (x, y) coordinates.

    Note: 
        both input and output arrays of `fn` should store (y, x) coordinates.

    Returns:
        Tuple[torch.Tensor, torch.Tensor]: Two maps `X` and `Y`, where for each 
            pixel (y, x) or coordinate (x, y),
            `(X[y, x], Y[y, x]) = fn([x, y])`
    """
    h, w, *_ = output_shape
    yy, xx = _meshgrid(h, w)  # h x w
    yy = yy.unsqueeze(0).broadcast_to(batch_size, h, w).to(device)
    xx = xx.unsqueeze(0).broadcast_to(batch_size, h, w).to(device)

    in_xxyy = torch.stack(
        [xx, yy], dim=-1).reshape([batch_size, h*w, 2])  # (h x w) x 2
    out_xxyy: torch.Tensor = fn(in_xxyy)  # (h x w) x 2
    return out_xxyy.reshape(batch_size, h, w, 2)


def _safe_arctanh(x: torch.Tensor, eps: float = 0.001) -> torch.Tensor:
    return torch.clamp(x, -1+eps, 1-eps).arctanh()


def inverted_tanh_warp_transform(coords: torch.Tensor, matrix: torch.Tensor,
                                 warp_factor: float, warped_shape: Tuple[int, int]):
    """ Inverted tanh-warp function.

    Args:
        coords (torch.Tensor): b x n x 2 (x, y). The transformed coordinates.
        matrix: b x 3 x 3. A matrix that transforms un-normalized coordinates 
            from the original image to the aligned yet not-warped image.
        warp_factor (float): The warp factor. 
            0 means linear transform, 1 means full tanh warp.
        warped_shape (tuple): [height, width].

    Returns:
        torch.Tensor: b x n x 2 (x, y). The original coordinates.
    """
    h, w, *_ = warped_shape
    # h -= 1
    # w -= 1

    w_h = torch.tensor([[w, h]]).to(coords)

    if warp_factor > 0:
        # normalize coordinates to [-1, +1]
        coords = coords / w_h * 2 - 1

        nl_part1 = coords > 1.0 - warp_factor
        nl_part2 = coords < -1.0 + warp_factor

        ret_nl_part1 = _safe_arctanh(
            (coords - 1.0 + warp_factor) /
            warp_factor) * warp_factor + \
            1.0 - warp_factor
        ret_nl_part2 = _safe_arctanh(
            (coords + 1.0 - warp_factor) /
            warp_factor) * warp_factor - \
            1.0 + warp_factor

        coords = torch.where(nl_part1, ret_nl_part1,
                             torch.where(nl_part2, ret_nl_part2, coords))

        # denormalize
        coords = (coords + 1) / 2 * w_h

    coords_homo = torch.cat(
        [coords, torch.ones_like(coords[:, :, [0]])], dim=-1)  # b x n x 3

    # inv_matrix = torch.linalg.inv(matrix)  # b x 3 x 3
    device = matrix.device
    inv_matrix_np = np.linalg.inv(matrix.cpu().numpy())
    inv_matrix = torch.from_numpy(inv_matrix_np).to(device)
    coords_homo = torch.bmm(
        coords_homo, inv_matrix.permute(0, 2, 1))  # b x n x 3
    return coords_homo[:, :, :2] / coords_homo[:, :, [2, 2]]


def tanh_warp_transform(
        coords: torch.Tensor, matrix: torch.Tensor,
        warp_factor: float, warped_shape: Tuple[int, int]):
    """ Tanh-warp function.

    Args:
        coords (torch.Tensor): b x n x 2 (x, y). The original coordinates.
        matrix: b x 3 x 3. A matrix that transforms un-normalized coordinates 
            from the original image to the aligned yet not-warped image.
        warp_factor (float): The warp factor. 
            0 means linear transform, 1 means full tanh warp.
        warped_shape (tuple): [height, width].

    Returns:
        torch.Tensor: b x n x 2 (x, y). The transformed coordinates.
    """
    h, w, *_ = warped_shape
    # h -= 1
    # w -= 1
    w_h = torch.tensor([[w, h]]).to(coords)

    coords_homo = torch.cat(
        [coords, torch.ones_like(coords[:, :, [0]])], dim=-1)  # b x n x 3

    coords_homo = torch.bmm(coords_homo, matrix.transpose(2, 1))  # b x n x 3
    coords = (coords_homo[:, :, :2] / coords_homo[:, :, [2, 2]])  # b x n x 2

    if warp_factor > 0:
        # normalize coordinates to [-1, +1]
        coords = coords / w_h * 2 - 1

        nl_part1 = coords > 1.0 - warp_factor
        nl_part2 = coords < -1.0 + warp_factor

        ret_nl_part1 = torch.tanh(
            (coords - 1.0 + warp_factor) /
            warp_factor) * warp_factor + \
            1.0 - warp_factor
        ret_nl_part2 = torch.tanh(
            (coords + 1.0 - warp_factor) /
            warp_factor) * warp_factor - \
            1.0 + warp_factor

        coords = torch.where(nl_part1, ret_nl_part1,
                             torch.where(nl_part2, ret_nl_part2, coords))

        # denormalize
        coords = (coords + 1) / 2 * w_h

    return coords


def make_tanh_warp_grid(matrix: torch.Tensor, warp_factor: float,
                        warped_shape: Tuple[int, int],
                        orig_shape: Tuple[int, int]):
    """
    Args:
        matrix: bx3x3 matrix.
        warp_factor: The warping factor. `warp_factor=1.0` represents a vannila Tanh-warping, 
           `warp_factor=0.0` represents a cropping.
        warped_shape: The target image shape to transform to.

    Returns:
        torch.Tensor: b x h x w x 2 (x, y).
    """
    orig_h, orig_w, *_ = orig_shape
    w_h = torch.tensor([orig_w, orig_h]).to(matrix).reshape(1, 1, 1, 2)
    return _forge_grid(
        matrix.size(0), matrix.device,
        warped_shape,
        functools.partial(inverted_tanh_warp_transform,
                          matrix=matrix,
                          warp_factor=warp_factor,
                          warped_shape=warped_shape)) / w_h*2-1


def make_inverted_tanh_warp_grid(matrix: torch.Tensor, warp_factor: float,
                                 warped_shape: Tuple[int, int],
                                 orig_shape: Tuple[int, int]):
    """
    Args:
        matrix: bx3x3 matrix.
        warp_factor: The warping factor. `warp_factor=1.0` represents a vannila Tanh-warping, 
           `warp_factor=0.0` represents a cropping.
        warped_shape: The target image shape to transform to.
        orig_shape: The original image shape that is transformed from.

    Returns:
        torch.Tensor: b x h x w x 2 (x, y).
    """
    h, w, *_ = warped_shape
    w_h = torch.tensor([w, h]).to(matrix).reshape(1, 1, 1, 2)
    return _forge_grid(
        matrix.size(0), matrix.device,
        orig_shape,
        functools.partial(tanh_warp_transform,
                          matrix=matrix,
                          warp_factor=warp_factor,
                          warped_shape=warped_shape)) / w_h * 2-1