File size: 4,761 Bytes
d4e7f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
from typing import Optional, Dict, Any
import functools
import torch
import torch.nn.functional as F
from ..transform import get_face_align_matrix, make_tanh_warp_grid
from .base import FaceAttribute
from ..farl import farl_classification
from ..util import download_jit
import numpy as np


def get_std_points_xray(out_size=256, mid_size=500):
    std_points_256 = np.array(
        [
            [85.82991, 85.7792],
            [169.0532, 84.3381],
            [127.574, 137.0006],
            [90.6964, 174.7014],
            [167.3069, 173.3733],
        ]
    )
    std_points_256[:, 1] += 30
    old_size = 256
    mid = mid_size / 2
    new_std_points = std_points_256 - old_size / 2 + mid
    target_pts = new_std_points * out_size / mid_size
    target_pts = torch.from_numpy(target_pts).float()
    return target_pts


pretrain_settings = {
    "celeba/224": {
        # acc 92.06617474555969
        "num_classes": 40,
        "layers": [11],
        "url": "https://github.com/FacePerceiver/facer/releases/download/models-v1/face_attribute.farl.celeba.pt",
        "matrix_src_tag": "points",
        "get_matrix_fn": functools.partial(
            get_face_align_matrix,
            target_shape=(224, 224),
            target_pts=get_std_points_xray(out_size=224, mid_size=500),
        ),
        "get_grid_fn": functools.partial(
            make_tanh_warp_grid, warp_factor=0.0, warped_shape=(224, 224)
        ),
        "classes": [
            "5_o_Clock_Shadow",
            "Arched_Eyebrows",
            "Attractive",
            "Bags_Under_Eyes",
            "Bald",
            "Bangs",
            "Big_Lips",
            "Big_Nose",
            "Black_Hair",
            "Blond_Hair",
            "Blurry",
            "Brown_Hair",
            "Bushy_Eyebrows",
            "Chubby",
            "Double_Chin",
            "Eyeglasses",
            "Goatee",
            "Gray_Hair",
            "Heavy_Makeup",
            "High_Cheekbones",
            "Male",
            "Mouth_Slightly_Open",
            "Mustache",
            "Narrow_Eyes",
            "No_Beard",
            "Oval_Face",
            "Pale_Skin",
            "Pointy_Nose",
            "Receding_Hairline",
            "Rosy_Cheeks",
            "Sideburns",
            "Smiling",
            "Straight_Hair",
            "Wavy_Hair",
            "Wearing_Earrings",
            "Wearing_Hat",
            "Wearing_Lipstick",
            "Wearing_Necklace",
            "Wearing_Necktie",
            "Young",
        ],
    }
}


def load_face_attr(model_path, num_classes=40, layers=[11]):
    model = farl_classification(num_classes=num_classes, layers=layers)
    state_dict = download_jit(model_path, jit=False)
    model.load_state_dict(state_dict)
    return model


class FaRLFaceAttribute(FaceAttribute):
    """The face attribute recognition models from [FaRL](https://github.com/FacePerceiver/FaRL).

    Please consider citing
    ```bibtex
        @article{zheng2021farl,
            title={General Facial Representation Learning in a Visual-Linguistic Manner},
            author={Zheng, Yinglin and Yang, Hao and Zhang, Ting and Bao, Jianmin and Chen,
                Dongdong and Huang, Yangyu and Yuan, Lu and Chen,
                Dong and Zeng, Ming and Wen, Fang},
            journal={arXiv preprint arXiv:2112.03109},
            year={2021}
        }
    ```
    """

    def __init__(
        self,
        conf_name: Optional[str] = None,
        model_path: Optional[str] = None,
        device=None,
    ) -> None:
        super().__init__()
        if conf_name is None:
            conf_name = "celeba/224"
        if model_path is None:
            model_path = pretrain_settings[conf_name]["url"]
        self.conf_name = conf_name

        setting = pretrain_settings[self.conf_name]
        self.labels = setting["classes"]
        self.net = load_face_attr(model_path, num_classes=setting["num_classes"], layers = setting["layers"])
        if device is not None:
            self.net = self.net.to(device)

        self.eval()

    def forward(self, images: torch.Tensor, data: Dict[str, Any]):
        setting = pretrain_settings[self.conf_name]
        images = images.float() / 255.0  # backbone 自带 normalize
        _, _, h, w = images.shape

        simages = images[data["image_ids"]]
        matrix = setting["get_matrix_fn"](data[setting["matrix_src_tag"]])
        grid = setting["get_grid_fn"](matrix=matrix, orig_shape=(h, w))

        w_images = F.grid_sample(simages, grid, mode="bilinear", align_corners=False)

        outputs = self.net(w_images)
        probs = torch.sigmoid(outputs)

        data["attrs"] = probs

        return data


if __name__ == "__main__":
    model = FaRLFaceAttribute()