File size: 38,889 Bytes
d4e7f2f 3461e1d d4e7f2f 43d33f6 d4e7f2f db668b3 d4e7f2f 249fe7e d4e7f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 |
# -*- coding: utf-8 -*-
# Author: Gaojian Wang@ZJUICSR
# --------------------------------------------------------
# This source code is licensed under the Attribution-NonCommercial 4.0 International License.
# You can find the license in the LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# pip uninstall nvidia_cublas_cu11
import sys
sys.path.append('..')
import os
os.system(f'pip install dlib')
import torch
import numpy as np
from PIL import Image
import models_mae
from torch.nn import functional as F
import dlib
import gradio as gr
# loading model
model = getattr(models_mae, 'mae_vit_base_patch16')()
class ITEM:
def __init__(self, img, parsing_map):
self.image = img
self.parsing_map = parsing_map
face_to_show = ITEM(None, None)
check_region = {'Eyebrows': [2, 3],
'Eyes': [4, 5],
'Nose': [6],
'Mouth': [7, 8, 9],
'Face Boundaries': [10, 1, 0],
'Hair': [10],
'Skin': [1],
'Background': [0]}
def get_boundingbox(face, width, height, minsize=None):
"""
Expects a dlib face to generate a quadratic bounding box.
:param face: dlib face class
:param width: frame width
:param height: frame height
:param cfg.face_scale: bounding box size multiplier to get a bigger face region
:param minsize: set minimum bounding box size
:return: x, y, bounding_box_size in opencv form
"""
x1 = face.left()
y1 = face.top()
x2 = face.right()
y2 = face.bottom()
size_bb = int(max(x2 - x1, y2 - y1) * 1.3)
if minsize:
if size_bb < minsize:
size_bb = minsize
center_x, center_y = (x1 + x2) // 2, (y1 + y2) // 2
# Check for out of bounds, x-y top left corner
x1 = max(int(center_x - size_bb // 2), 0)
y1 = max(int(center_y - size_bb // 2), 0)
# Check for too big bb size for given x, y
size_bb = min(width - x1, size_bb)
size_bb = min(height - y1, size_bb)
return x1, y1, size_bb
def extract_face(frame):
face_detector = dlib.get_frontal_face_detector()
image = np.array(frame.convert('RGB'))
faces = face_detector(image, 1)
if len(faces) > 0:
# For now only take the biggest face
face = faces[0]
# Face crop and rescale(follow FF++)
x, y, size = get_boundingbox(face, image.shape[1], image.shape[0])
# Get the landmarks/parts for the face in box d only with the five key points
cropped_face = image[y:y + size, x:x + size]
# cropped_face = cv2.resize(cropped_face, (224, 224), interpolation=cv2.INTER_CUBIC)
return Image.fromarray(cropped_face)
else:
return None
from torchvision.transforms import transforms
def show_one_img_patchify(img, model):
x = torch.tensor(img)
# make it a batch-like
x = x.unsqueeze(dim=0)
x = torch.einsum('nhwc->nchw', x)
x_patches = model.patchify(x)
# visualize the img_patchify
n = int(np.sqrt(x_patches.shape[1]))
image_size = int(224/n)
padding = 3
new_img = Image.new('RGB', (n * image_size + padding*(n-1), n * image_size + padding*(n-1)), 'white')
for i, patch in enumerate(x_patches[0]):
ax = i % n
ay = int(i / n)
patch_img_tensor = torch.reshape(patch, (model.patch_embed.patch_size[0], model.patch_embed.patch_size[1], 3))
patch_img_tensor = torch.einsum('hwc->chw', patch_img_tensor)
patch_img = transforms.ToPILImage()(patch_img_tensor)
new_img.paste(patch_img, (ax * image_size + padding * ax, ay * image_size + padding * ay))
new_img = new_img.resize((224, 224), Image.BICUBIC)
return new_img
def show_one_img_parchify_mask(img, parsing_map, mask, model):
mask = mask.detach()
mask_patches = mask.unsqueeze(-1).repeat(1, 1, model.patch_embed.patch_size[0]**2 *3) # (N, H*W, p*p*3)
mask = model.unpatchify(mask_patches) # 1 is removing, 0 is keeping
mask = torch.einsum('nchw->nhwc', mask).detach().cpu()
# visualize mask
vis_mask = mask[0].clone()
vis_mask[vis_mask == 1] = 1 # gray for masked
vis_mask[vis_mask == 2] = -1 # black for highlight masked facial region
vis_mask[vis_mask == 0] = 2 # white for visible
vis_mask = torch.clip(vis_mask * 127, 0, 255).int()
fasking_mask = vis_mask.numpy().astype(np.uint8)
fasking_mask = Image.fromarray(fasking_mask)
# visualize the masked image
im_masked = img
im_masked[mask[0] == 1] = 127
im_masked[mask[0] == 2] = 0
im_masked = Image.fromarray(im_masked)
# visualize the masked image_patchify
parsing_map_masked = parsing_map
parsing_map_masked[mask[0] == 1] = 127
parsing_map_masked[mask[0] == 2] = 0
return [show_one_img_patchify(parsing_map_masked, model), fasking_mask, im_masked]
# Random
class CollateFn_Random:
def __init__(self, input_size=224, patch_size=16, mask_ratio=0.75):
self.img_size = input_size
self.patch_size = patch_size
self.num_patches_axis = input_size // patch_size
self.num_patches = (input_size // patch_size) ** 2
self.mask_ratio = mask_ratio
def __call__(self, image, parsing_map):
random_mask = torch.zeros(parsing_map.size(0), self.num_patches, dtype=torch.float32) # torch.Size([BS, 14, 14])
random_mask = self.masking(parsing_map, random_mask)
return {'image': image, 'random_mask': random_mask}
def masking(self, parsing_map, random_mask):
"""
:return:
"""
for i in range(random_mask.size(0)):
# normalize the masking to strictly target percentage for batch computation.
num_mask_to_change = int(self.mask_ratio * self.num_patches)
mask_change_to = 1 if num_mask_to_change >= 0 else 0
change_indices = torch.randperm(self.num_patches)
for idx in range(num_mask_to_change):
random_mask[i, change_indices[idx]] = mask_change_to
return random_mask
def do_random_masking(image, parsing_map_vis, ratio):
img = torch.from_numpy(image)
img = img.unsqueeze(0).permute(0, 3, 1, 2)
parsing_map = face_to_show.parsing_map
parsing_map = torch.tensor(parsing_map)
mask_method = CollateFn_Random(input_size=224, patch_size=16, mask_ratio=ratio)
mask = mask_method(img, parsing_map)['random_mask']
random_patch_on_parsing, random_mask, random_mask_on_image = show_one_img_parchify_mask(image, parsing_map_vis, mask, model)
return random_patch_on_parsing, random_mask, random_mask_on_image
# Fasking
class CollateFn_Fasking:
def __init__(self, input_size=224, patch_size=16, mask_ratio=0.75):
self.img_size = input_size
self.patch_size = patch_size
self.num_patches_axis = input_size // patch_size
self.num_patches = (input_size // patch_size) ** 2
self.mask_ratio = mask_ratio
# --------------------------------------------------------------------------
self.facial_region_group = [
[2, 4], # right eye
[3, 5], # left eye
[6], # nose
[7, 8, 9], # mouth
[10], # hair
[1], # skin
[0] # background
] # ['background', 'face', 'rb', 'lb', 're', 'le', 'nose', 'ulip', 'imouth', 'llip', 'hair']
def __call__(self, image, parsing_map):
# image = torch.stack([sample['image'] for sample in samples]) # torch.Size([bs, 3, 224, 224])
# parsing_map = torch.stack([sample['parsing_map'] for sample in samples]) # torch.Size([bs, 1, 224, 224])
# parsing_map = parsing_map.squeeze(1) # torch.Size([BS, 1, 224, 224]) → torch.Size([BS, 224, 224])
# random select a facial semantic region and get corresponding mask(masking all patches include this region)
fasking_mask = torch.zeros(parsing_map.size(0), self.num_patches_axis, self.num_patches_axis, dtype=torch.float32) # torch.Size([BS, 14, 14])
fasking_mask = self.fasking(parsing_map, fasking_mask)
return {'image': image, 'fasking_mask': fasking_mask}
def fasking(self, parsing_map, fasking_mask):
"""
:return:
"""
for i in range(parsing_map.size(0)):
terminate = False
for seg_group in self.facial_region_group[:-2]:
if terminate:
break
for comp_value in seg_group:
fasking_mask[i] = torch.maximum(
fasking_mask[i], F.max_pool2d((parsing_map[i].unsqueeze(0) == comp_value).float(), kernel_size=self.patch_size))
if fasking_mask[i].mean() >= ((self.mask_ratio * self.num_patches) / self.num_patches):
terminate = True
break
fasking_mask = fasking_mask.view(parsing_map.size(0), -1)
for i in range(fasking_mask.size(0)):
# normalize the masking to strictly target percentage for batch computation.
num_mask_to_change = (self.mask_ratio * self.num_patches - fasking_mask[i].sum(dim=-1)).int()
mask_change_to = torch.clamp(num_mask_to_change, 0, 1).item()
select_indices = (fasking_mask[i] == (1 - mask_change_to)).nonzero(as_tuple=False).view(-1)
change_indices = torch.randperm(len(select_indices))[:torch.abs(num_mask_to_change)]
fasking_mask[i, select_indices[change_indices]] = mask_change_to
return fasking_mask
def do_fasking_masking(image, parsing_map_vis, ratio):
img = torch.from_numpy(image)
img = img.unsqueeze(0).permute(0, 3, 1, 2)
parsing_map = face_to_show.parsing_map
parsing_map = torch.tensor(parsing_map)
mask_method = CollateFn_Fasking(input_size=224, patch_size=16, mask_ratio=ratio)
mask = mask_method(img, parsing_map)['fasking_mask']
fasking_patch_on_parsing, fasking_mask, fasking_mask_on_image = show_one_img_parchify_mask(image, parsing_map_vis, mask, model)
return fasking_patch_on_parsing, fasking_mask, fasking_mask_on_image
# FRP
class CollateFn_FR_P_Masking:
def __init__(self, input_size=224, patch_size=16, mask_ratio=0.75):
self.img_size = input_size
self.patch_size = patch_size
self.num_patches_axis = input_size // patch_size
self.num_patches = (input_size // patch_size) ** 2
self.mask_ratio = mask_ratio
self.facial_region_group = [
[2, 3], # eyebrows
[4, 5], # eyes
[6], # nose
[7, 8, 9], # mouth
[10, 1, 0], # face boundaries
[10], # hair
[1], # facial skin
[0] # background
] # ['background', 'face', 'rb', 'lb', 're', 'le', 'nose', 'ulip', 'imouth', 'llip', 'hair']
def __call__(self, image, parsing_map):
# image = torch.stack([sample['image'] for sample in samples]) # torch.Size([bs, 3, 224, 224])
# parsing_map = torch.stack([sample['parsing_map'] for sample in samples]) # torch.Size([bs, 1, 224, 224])
# parsing_map = parsing_map.squeeze(1) # torch.Size([BS, 1, 224, 224]) → torch.Size([BS, 224, 224])
# random select a facial semantic region and get corresponding mask(masking all patches include this region)
P_mask = torch.zeros(parsing_map.size(0), self.num_patches_axis, self.num_patches_axis, dtype=torch.float32) # torch.Size([BS, 14, 14])
P_mask = self.random_variable_facial_semantics_masking(parsing_map, P_mask)
return {'image': image, 'P_mask': P_mask}
def random_variable_facial_semantics_masking(self, parsing_map, P_mask):
"""
:return:
"""
P_mask = P_mask.view(P_mask.size(0), -1)
for i in range(parsing_map.size(0)):
for seg_group in self.facial_region_group[:-2]:
mask_in_seg_group = torch.zeros(1, self.num_patches_axis, self.num_patches_axis, dtype=torch.float32)
if seg_group == [10, 1, 0]:
patch_hair_bg = F.max_pool2d(
((parsing_map[i].unsqueeze(0) == 10) + (parsing_map[i].unsqueeze(0) == 0)).float(),
kernel_size=self.patch_size)
patch_skin = F.max_pool2d((parsing_map[i].unsqueeze(0) == 1).float(), kernel_size=self.patch_size)
# skin&hair or skin&bg defined as facial boundaries:
mask_in_seg_group = torch.maximum(mask_in_seg_group,
(patch_hair_bg.bool() & patch_skin.bool()).float())
else:
for comp_value in seg_group:
mask_in_seg_group = torch.maximum(mask_in_seg_group,
F.max_pool2d(
(parsing_map[i].unsqueeze(0) == comp_value).float(),
kernel_size=self.patch_size))
mask_in_seg_group = mask_in_seg_group.view(-1)
# to_mask_patches_in_seg_group = mask_in_seg_group - (mask_in_seg_group & P_mask[i])
to_mask_patches_in_seg_group = (mask_in_seg_group - P_mask[i]) > 0
mask_num = (mask_in_seg_group.sum(dim=-1) * self.mask_ratio -
(mask_in_seg_group.sum(dim=-1)-to_mask_patches_in_seg_group.sum(dim=-1))).int()
if mask_num > 0:
select_indices = (to_mask_patches_in_seg_group == 1).nonzero(as_tuple=False).view(-1)
change_indices = torch.randperm(len(select_indices))[:mask_num]
P_mask[i, select_indices[change_indices]] = 1
num_mask_to_change = (self.mask_ratio * self.num_patches - P_mask[i].sum(dim=-1)).int()
mask_change_to = torch.clamp(num_mask_to_change, 0, 1).item()
select_indices = (P_mask[i] == (1 - mask_change_to)).nonzero(as_tuple=False).view(-1)
change_indices = torch.randperm(len(select_indices))[:torch.abs(num_mask_to_change)]
P_mask[i, select_indices[change_indices]] = mask_change_to
return P_mask
def do_FRP_masking(image, parsing_map_vis, ratio):
img = torch.from_numpy(image)
img = img.unsqueeze(0).permute(0, 3, 1, 2)
parsing_map = face_to_show.parsing_map
parsing_map = torch.tensor(parsing_map)
mask_method = CollateFn_FR_P_Masking(input_size=224, patch_size=16, mask_ratio=ratio)
masks = mask_method(img, parsing_map)
mask = masks['P_mask']
FRP_patch_on_parsing, FRP_mask, FRP_mask_on_image = show_one_img_parchify_mask(image, parsing_map_vis, mask, model)
return FRP_patch_on_parsing, FRP_mask, FRP_mask_on_image
# CRFR_R
class CollateFn_CRFR_R_Masking:
def __init__(self, input_size=224, patch_size=16, mask_ratio=0.75, region='Nose'):
self.img_size = input_size
self.patch_size = patch_size
self.num_patches_axis = input_size // patch_size
self.num_patches = (input_size // patch_size) ** 2
self.mask_ratio = mask_ratio
self.facial_region_group = [
[2, 3], # eyebrows
[4, 5], # eyes
[6], # nose
[7, 8, 9], # mouth
[10, 1, 0], # face boundaries
[10], # hair
[1], # facial skin
[0] # background
] # ['background', 'face', 'rb', 'lb', 're', 'le', 'nose', 'ulip', 'imouth', 'llip', 'hair']
self.random_specific_facial_region = check_region[region]
def __call__(self, image, parsing_map):
# mage = torch.stack([sample['image'] for sample in samples]) # torch.Size([bs, 3, 224, 224])
# parsing_map = torch.stack([sample['parsing_map'] for sample in samples]) # torch.Size([bs, 1, 224, 224])
# parsing_map = parsing_map.squeeze(1) # torch.Size([BS, 1, 224, 224]) → torch.Size([BS, 224, 224])
# random select a facial semantic region and get corresponding mask(masking all patches include this region)
facial_region_mask = torch.zeros(parsing_map.size(0), self.num_patches_axis, self.num_patches_axis, dtype=torch.float32) # torch.Size([1, H/P, W/P])
facial_region_mask, random_specific_facial_region = self.masking_all_patches_in_random_specific_facial_region(parsing_map, facial_region_mask)
# torch.Size([num_patches,]), list
CRFR_R_mask, facial_region_mask = self.random_variable_masking(facial_region_mask)
# torch.Size([num_patches,]), torch.Size([num_patches,])
return {'image': image, 'CRFR_R_mask': CRFR_R_mask, 'fr_mask': facial_region_mask}
def masking_all_patches_in_random_specific_facial_region(self, parsing_map, facial_region_mask):
"""
:param parsing_map: [1, img_size, img_size])
:param facial_region_mask: [1, num_patches ** .5, num_patches ** .5]
:return: facial_region_mask, random_specific_facial_region
"""
# random_specific_facial_region = random.choice(self.facial_region_group[:-2])
# random_specific_facial_region = [6] # for test: nose
if self.random_specific_facial_region == [10, 1, 0]: # facial boundaries, 10-hair 1-skin 0-background
# True for hair(10) or bg(0) patches:
patch_hair_bg = F.max_pool2d(((parsing_map == 10) + (parsing_map == 0)).float(),
kernel_size=self.patch_size)
# True for skin(1) patches:
patch_skin = F.max_pool2d((parsing_map == 1).float(), kernel_size=self.patch_size)
# skin&hair or skin&bg is defined as facial boundaries:
facial_region_mask = (patch_hair_bg.bool() & patch_skin.bool()).float()
else:
for facial_region_index in self.random_specific_facial_region:
facial_region_mask = torch.maximum(facial_region_mask,
F.max_pool2d((parsing_map == facial_region_index).float(),
kernel_size=self.patch_size))
return facial_region_mask.view(parsing_map.size(0), -1), self.random_specific_facial_region
def random_variable_masking(self, facial_region_mask):
CRFR_R_mask = facial_region_mask.clone()
for i in range(facial_region_mask.size(0)):
num_mask_to_change = (self.mask_ratio * self.num_patches - facial_region_mask[i].sum(dim=-1)).int()
mask_change_to = 1 if num_mask_to_change >= 0 else 0
select_indices = (facial_region_mask[i] == (1 - mask_change_to)).nonzero(as_tuple=False).view(-1)
change_indices = torch.randperm(len(select_indices))[:torch.abs(num_mask_to_change)]
CRFR_R_mask[i, select_indices[change_indices]] = mask_change_to
facial_region_mask[i] = CRFR_R_mask[i] if num_mask_to_change < 0 else facial_region_mask[i]
return CRFR_R_mask, facial_region_mask
def do_CRFR_R_masking(image, parsing_map_vis, ratio, region):
img = torch.from_numpy(image)
img = img.unsqueeze(0).permute(0, 3, 1, 2)
parsing_map = face_to_show.parsing_map
parsing_map = torch.tensor(parsing_map)
mask_method = CollateFn_CRFR_R_Masking(input_size=224, patch_size=16, mask_ratio=ratio, region=region)
masks = mask_method(img, parsing_map)
mask = masks['CRFR_R_mask']
fr_mask = masks['fr_mask']
CRFR_R_patch_on_parsing, CRFR_R_mask, CRFR_R_mask_on_image = show_one_img_parchify_mask(image, parsing_map_vis, mask+fr_mask, model)
return CRFR_R_patch_on_parsing, CRFR_R_mask, CRFR_R_mask_on_image
# CRFR_P
class CollateFn_CRFR_P_Masking:
def __init__(self, input_size=224, patch_size=16, mask_ratio=0.75, region='Nose'):
self.img_size = input_size
self.patch_size = patch_size
self.num_patches_axis = input_size // patch_size
self.num_patches = (input_size // patch_size) ** 2
self.mask_ratio = mask_ratio
self.facial_region_group = [
[2, 3], # eyebrows
[4, 5], # eyes
[6], # nose
[7, 8, 9], # mouth
[10, 1, 0], # face boundaries
[10], # hair
[1], # facial skin
[0] # background
] # ['background', 'face', 'rb', 'lb', 're', 'le', 'nose', 'ulip', 'imouth', 'llip', 'hair']
self.random_specific_facial_region = check_region[region]
def __call__(self, image, parsing_map):
# image = torch.stack([sample['image'] for sample in samples]) # torch.Size([bs, 3, 224, 224])
# parsing_map = torch.stack([sample['parsing_map'] for sample in samples]) # torch.Size([bs, 1, 224, 224])
# parsing_map = parsing_map.squeeze(1) # torch.Size([BS, 1, 224, 224]) → torch.Size([BS, 224, 224])
# random select a facial semantic region and get corresponding mask(masking all patches include this region)
facial_region_mask = torch.zeros(parsing_map.size(0), self.num_patches_axis, self.num_patches_axis,
dtype=torch.float32) # torch.Size([1, H/P, W/P])
facial_region_mask, random_specific_facial_region = self.masking_all_patches_in_random_specific_facial_region(parsing_map, facial_region_mask)
# torch.Size([num_patches,]), list
CRFR_P_mask, facial_region_mask = self.random_variable_masking(parsing_map, facial_region_mask, random_specific_facial_region)
# torch.Size([num_patches,]), torch.Size([num_patches,])
return {'image': image, 'CRFR_P_mask': CRFR_P_mask, 'fr_mask': facial_region_mask}
def masking_all_patches_in_random_specific_facial_region(self, parsing_map, facial_region_mask):
"""
:param parsing_map: [1, img_size, img_size])
:param facial_region_mask: [1, num_patches ** .5, num_patches ** .5]
:return: facial_region_mask, random_specific_facial_region
"""
# random_specific_facial_region = random.choice(self.facial_region_group[:-2])
# random_specific_facial_region = [4, 5] # for test: eyes
if self.random_specific_facial_region == [10, 1, 0]: # facial boundaries, 10-hair 1-skin 0-background
# True for hair(10) or bg(0) patches:
patch_hair_bg = F.max_pool2d(((parsing_map == 10) + (parsing_map == 0)).float(), kernel_size=self.patch_size)
# True for skin(1) patches:
patch_skin = F.max_pool2d((parsing_map == 1).float(), kernel_size=self.patch_size)
# skin&hair or skin&bg is defined as facial boundaries:
facial_region_mask = (patch_hair_bg.bool() & patch_skin.bool()).float()
# # True for hair(10) or skin(1) patches:
# patch_hair_face = F.max_pool2d(((parsing_map == 10) + (parsing_map == 1)).float(),
# kernel_size=self.patch_size)
# # True for bg(0) patches:
# patch_bg = F.max_pool2d((parsing_map == 0).float(), kernel_size=self.patch_size)
# # skin&bg or hair&bg defined as facial boundaries:
# facial_region_mask = (patch_hair_face.bool() & patch_bg.bool()).float()
else:
for facial_region_index in self.random_specific_facial_region:
facial_region_mask = torch.maximum(facial_region_mask,
F.max_pool2d((parsing_map == facial_region_index).float(),
kernel_size=self.patch_size))
return facial_region_mask.view(parsing_map.size(0), -1), self.random_specific_facial_region
def random_variable_masking(self, parsing_map, facial_region_mask, random_specific_facial_region):
CRFR_P_mask = facial_region_mask.clone()
other_facial_region_group = [region for region in self.facial_region_group if
region != random_specific_facial_region]
# print(other_facial_region_group)
for i in range(facial_region_mask.size(0)): # iterate each map in BS
num_mask_to_change = (self.mask_ratio * self.num_patches - facial_region_mask[i].sum(dim=-1)).int()
# mask_change_to = 1 if num_mask_to_change >= 0 else 0
mask_change_to = torch.clamp(num_mask_to_change, 0, 1).item()
# masking patches in other facial regions according to the corresponding ratio
if mask_change_to == 1:
# mask_ratio_other_fr = remain(unmasked) patches should be masked / remain(unmasked) patches
mask_ratio_other_fr = (
num_mask_to_change / (self.num_patches - facial_region_mask[i].sum(dim=-1)))
masked_patches = facial_region_mask[i].clone()
for other_fr in other_facial_region_group:
to_mask_patches = torch.zeros(1, self.num_patches_axis, self.num_patches_axis,
dtype=torch.float32)
if other_fr == [10, 1, 0]:
patch_hair_bg = F.max_pool2d(
((parsing_map[i].unsqueeze(0) == 10) + (parsing_map[i].unsqueeze(0) == 0)).float(),
kernel_size=self.patch_size)
patch_skin = F.max_pool2d((parsing_map[i].unsqueeze(0) == 1).float(), kernel_size=self.patch_size)
# skin&hair or skin&bg defined as facial boundaries:
to_mask_patches = (patch_hair_bg.bool() & patch_skin.bool()).float()
else:
for facial_region_index in other_fr:
to_mask_patches = torch.maximum(to_mask_patches,
F.max_pool2d((parsing_map[i].unsqueeze(0) == facial_region_index).float(),
kernel_size=self.patch_size))
# ignore already masked patches:
to_mask_patches = (to_mask_patches.view(-1) - masked_patches) > 0
# to_mask_patches = to_mask_patches.view(-1) - (to_mask_patches.view(-1) & masked_patches)
select_indices = to_mask_patches.nonzero(as_tuple=False).view(-1)
change_indices = torch.randperm(len(select_indices))[
:torch.round(to_mask_patches.sum() * mask_ratio_other_fr).int()]
CRFR_P_mask[i, select_indices[change_indices]] = mask_change_to
# prevent overlap
masked_patches = masked_patches + to_mask_patches.float()
# mask/unmask patch from other facial regions to get CRFR_P_mask with fixed size
num_mask_to_change = (self.mask_ratio * self.num_patches - CRFR_P_mask[i].sum(dim=-1)).int()
# mask_change_to = 1 if num_mask_to_change >= 0 else 0
mask_change_to = torch.clamp(num_mask_to_change, 0, 1).item()
# prevent unmasking facial_region_mask
select_indices = ((CRFR_P_mask[i] + facial_region_mask[i]) == (1 - mask_change_to)).nonzero(as_tuple=False).view(-1)
change_indices = torch.randperm(len(select_indices))[:torch.abs(num_mask_to_change)]
CRFR_P_mask[i, select_indices[change_indices]] = mask_change_to
else:
# if the num of facial_region_mask is over (num_patches*mask_ratio),
# unmask it to get CRFR_P_mask with fixed size
select_indices = (facial_region_mask[i] == (1 - mask_change_to)).nonzero(as_tuple=False).view(-1)
change_indices = torch.randperm(len(select_indices))[:torch.abs(num_mask_to_change)]
CRFR_P_mask[i, select_indices[change_indices]] = mask_change_to
facial_region_mask[i] = CRFR_P_mask[i]
return CRFR_P_mask, facial_region_mask
def do_CRFR_P_masking(image, parsing_map_vis, ratio, region):
img = torch.from_numpy(image)
img = img.unsqueeze(0).permute(0, 3, 1, 2)
parsing_map = face_to_show.parsing_map
parsing_map = torch.tensor(parsing_map)
mask_method = CollateFn_CRFR_P_Masking(input_size=224, patch_size=16, mask_ratio=ratio, region=region)
masks = mask_method(img, parsing_map)
mask = masks['CRFR_P_mask']
fr_mask = masks['fr_mask']
CRFR_P_patch_on_parsing, CRFR_P_mask, CRFR_P_mask_on_image = show_one_img_parchify_mask(image, parsing_map_vis, mask+fr_mask, model)
return CRFR_P_patch_on_parsing, CRFR_P_mask, CRFR_P_mask_on_image
def vis_parsing_maps(parsing_anno):
part_colors = [[255, 255, 255],
[0, 0, 255], [255, 128, 0], [255, 255, 0],
[0, 255, 0], [0, 255, 128],
[0, 255, 255], [255, 0, 255], [255, 0, 128],
[128, 0, 255], [255, 0, 0]]
vis_parsing_anno = parsing_anno.copy().astype(np.uint8)
vis_parsing_anno_color = np.zeros((vis_parsing_anno.shape[0], vis_parsing_anno.shape[1], 3)) + 255
num_of_class = np.max(vis_parsing_anno)
for pi in range(1, num_of_class + 1):
index = np.where(vis_parsing_anno == pi)
vis_parsing_anno_color[index[0], index[1], :] = part_colors[pi]
vis_parsing_anno_color = vis_parsing_anno_color.astype(np.uint8)
return vis_parsing_anno_color
#from facer import facer
import facer
def do_face_parsing(img):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
face_detector = facer.face_detector('retinaface/mobilenet', device=device, threshold=0.3) # 0.3 for FF++
face_parser = facer.face_parser('farl/lapa/448', device=device) # celebm parser
img = extract_face(img)
with torch.inference_mode():
img = img.resize((224, 224), Image.BICUBIC)
image = torch.from_numpy(np.array(img.convert('RGB')))
image = image.unsqueeze(0).permute(0, 3, 1, 2).to(device=device)
try:
faces = face_detector(image)
faces = face_parser(image, faces)
seg_logits = faces['seg']['logits']
seg_probs = seg_logits.softmax(dim=1) # nfaces x nclasses x h x w
seg_probs = seg_probs.data # torch.Size([1, 11, 224, 224])
parsing = seg_probs.argmax(1) # [1, 224, 224]
parsing_map = parsing.data.cpu().numpy() # [1, 224, 224] int64
parsing_map = parsing_map.astype(np.int8) # smaller space
parsing_map_vis = vis_parsing_maps(parsing_map.squeeze(0))
except KeyError:
return gr.update()
face_to_show.image = img
face_to_show.parsing_map = parsing_map
return img, parsing_map_vis, show_one_img_patchify(parsing_map_vis, model)
# WebUI
with gr.Blocks() as demo:
# gr.Markdown("<h1 style='text-align: center;'>🧑 Visualization Demo of Facial Masking Strategies</h1>")
gr.HTML("<h1 style='text-align: center;'>🧑 Visualization Demo of Facial Masking Strategies</h1>")
gr.Markdown(
"This is a demo of visualizing different facial masking strategies that are introduced in [FSFM-3C](https://fsfm-3c.github.io/) for facial masked image modeling (MIM)."
)
gr.Markdown(
"- <b>Random Masking</b>: Random masking all patches."
)
gr.Markdown(
"- <b>Fasking-I</b>: Use a face parser to divide facial regions and priority masking non-skin and non-background regions."
)
gr.Markdown(
"- <b>FRP</b>: Facial Region Proportional masking, which masks an equal portion of patches in each facial region to the overall masking ratio."
)
gr.Markdown(
"- <b>CRFR-R</b>: (1) Covering a Random Facial Region followed by (2) Random masking other patche."
)
gr.Markdown(
"- <b>CRFR-P _(suggested in FSFM-3C)_</b>: (1) Covering a Random Facial Region followed by (2) Proportional masking masking other regions."
)
with gr.Column():
image = gr.Image(label="Upload/Capture/Paste a facial image", type="pil")
image_submit_btn = gr.Button("🖱️ Face Parsing")
with gr.Row():
ori_image = gr.Image(interactive=False, label="Detected Face")
parsing_map_vis = gr.Image(interactive=False, label="Face Parsing")
patch_parsing_map = gr.Image(interactive=False, label="Patchify")
gr.HTML('<div class="spacer-20"></div>')
with gr.Column(): # Random
random_submit_btn = gr.Button("🖱️ Random Masking")
ratio_random = gr.Slider(minimum=0, maximum=1, step=0.05, value=0.5, label="Masking Ratio for Random Masking")
with gr.Row():
random_patch_on_parsing = gr.Image(interactive=False, label="Mask/Parsing")
random_mask = gr.Image(interactive=False, label="Mask")
random_mask_on_image = gr.Image(interactive=False, label="Masked Face")
gr.HTML('<div class="spacer-20"></div>')
with gr.Column(): # Fasking-I
fasking_submit_btn = gr.Button("🖱️ Fasking-I")
ratio_fasking = gr.Slider(minimum=0, maximum=1, step=0.05, value=0.5, label="Masking Ratio for Fasking")
with gr.Row():
fasking_patch_on_parsing = gr.Image(interactive=False, label="Mask/Parsing")
fasking_mask = gr.Image(interactive=False, label="Mask")
fasking_mask_on_image = gr.Image(interactive=False, label="Masked Face")
gr.HTML('<div class="spacer-20"></div>')
with gr.Column(): # FRP
FRP_submit_btn = gr.Button("🖱️ FRP")
ratio_FRP = gr.Slider(minimum=0, maximum=1, step=0.05, value=0.5, label="Masking Ratio for FRP")
with gr.Row():
FRP_patch_on_parsing = gr.Image(interactive=False, label="Mask/Parsing")
FRP_mask = gr.Image(interactive=False, label="Mask")
FRP_mask_on_image = gr.Image(interactive=False, label="Masked Face")
gr.HTML('<div class="spacer-20"></div>')
with gr.Column(): # CRFR-R
CRFR_R_submit_btn = gr.Button("🖱️ CRFR-R")
ratio_CRFR_R = gr.Slider(minimum=0, maximum=1, step=0.05, value=0.5, label="Masking Ratio for CRFR-R")
mask_region_CRFR_R = gr.Radio(choices=['Eyebrows', 'Eyes', 'Nose', 'Mouth', 'Face Boundaries', 'Hair','Skin','Background'],
value='Eyes',
label="Facial Region (for CRFR, highlighted by black)")
with gr.Row():
CRFR_R_patch_on_parsing = gr.Image(interactive=False, label="Mask/Parsing")
CRFR_R_mask = gr.Image(interactive=False, label="Mask")
CRFR_R_mask_on_image = gr.Image(interactive=False, label="Masked Face")
gr.HTML('<div class="spacer-20"></div>')
with gr.Column(): # CRFR-P
CRFR_P_submit_btn = gr.Button("🖱️ CRFR-P (suggested in FSFM-3C)")
ratio_CRFR_P = gr.Slider(minimum=0, maximum=1, step=0.05, value=0.5, label="Masking Ratio for CRFR-P")
mask_region_CRFR_P = gr.Radio(choices=['Eyebrows', 'Eyes', 'Nose', 'Mouth', 'Face Boundaries', 'Hair', 'Skin', 'Background'],
value='Eyes',
label="Facial Region (for CRFR, highlighted by black)")
with gr.Row():
CRFR_P_patch_on_parsing = gr.Image(interactive=False, label="Mask/Parsing")
CRFR_P_mask = gr.Image(interactive=False, label="Mask")
CRFR_P_mask_on_image = gr.Image(interactive=False, label="Masked Face")
gr.HTML(
'<div style="display: flex; justify-content: center; gap: 20px; margin-bottom: 20px;">'
'<a href="https://mapmyvisitors.com/web/1bxvj" title="Visit tracker">'
'<img src="https://mapmyvisitors.com/map.png?d=jXP1NOOyT1tgXoUPspzdoiPssfitXz38c5uReUt9G9M&cl=ffffff">'
'</a>'
'</div>'
)
parseing_map = []
image_submit_btn.click(
fn = do_face_parsing,
inputs=image,
outputs=[ori_image, parsing_map_vis, patch_parsing_map]
)
random_submit_btn.click(
fn = do_random_masking,
inputs=[ori_image, parsing_map_vis, ratio_random],
outputs=[random_patch_on_parsing, random_mask, random_mask_on_image],
)
ratio_random.change(
fn = do_random_masking,
inputs=[ori_image, parsing_map_vis, ratio_random],
outputs=[random_patch_on_parsing, random_mask, random_mask_on_image],
)
fasking_submit_btn.click(
fn = do_fasking_masking,
inputs=[ori_image, parsing_map_vis, ratio_fasking],
outputs=[fasking_patch_on_parsing, fasking_mask, fasking_mask_on_image],
)
ratio_fasking.change(
fn = do_fasking_masking,
inputs=[ori_image, parsing_map_vis, ratio_fasking],
outputs=[fasking_patch_on_parsing, fasking_mask, fasking_mask_on_image],
)
FRP_submit_btn.click(
fn = do_FRP_masking,
inputs=[ori_image, parsing_map_vis, ratio_FRP],
outputs=[FRP_patch_on_parsing, FRP_mask, FRP_mask_on_image],
)
ratio_FRP.change(
fn = do_FRP_masking,
inputs=[ori_image, parsing_map_vis, ratio_FRP],
outputs=[FRP_patch_on_parsing, FRP_mask, FRP_mask_on_image],
)
CRFR_R_submit_btn.click(
fn = do_CRFR_R_masking,
inputs=[ori_image, parsing_map_vis, ratio_CRFR_R, mask_region_CRFR_R],
outputs=[CRFR_R_patch_on_parsing, CRFR_R_mask, CRFR_R_mask_on_image],
)
ratio_CRFR_R.change(
fn = do_CRFR_R_masking,
inputs=[ori_image, parsing_map_vis, ratio_CRFR_R, mask_region_CRFR_R],
outputs=[CRFR_R_patch_on_parsing, CRFR_R_mask, CRFR_R_mask_on_image],
)
mask_region_CRFR_R.change(
fn = do_CRFR_R_masking,
inputs=[ori_image, parsing_map_vis, ratio_CRFR_R, mask_region_CRFR_R],
outputs=[CRFR_R_patch_on_parsing, CRFR_R_mask, CRFR_R_mask_on_image],
)
CRFR_P_submit_btn.click(
fn = do_CRFR_P_masking,
inputs=[ori_image, parsing_map_vis, ratio_CRFR_P, mask_region_CRFR_P],
outputs=[CRFR_P_patch_on_parsing, CRFR_P_mask, CRFR_P_mask_on_image],
)
ratio_CRFR_P.change(
fn=do_CRFR_P_masking,
inputs=[ori_image, parsing_map_vis, ratio_CRFR_P, mask_region_CRFR_P],
outputs=[CRFR_P_patch_on_parsing, CRFR_P_mask, CRFR_P_mask_on_image],
)
mask_region_CRFR_P.change(
fn=do_CRFR_P_masking,
inputs=[ori_image, parsing_map_vis, ratio_CRFR_P, mask_region_CRFR_P],
outputs=[CRFR_P_patch_on_parsing, CRFR_P_mask, CRFR_P_mask_on_image],
)
if __name__ == "__main__":
gr.close_all()
demo.queue()
demo.launch() |