Spaces:
Running
Running
File size: 49,701 Bytes
c195a6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 |
import os
import re
import sys
sys.path.insert(0, '.')
sys.path.insert(0, '..')
import argparse
import gradio as gr
os.environ["GRADIO_TEMP_DIR"] = os.path.join(os.getcwd(), 'tmp')
import copy
import time
import shutil
import requests
from PIL import Image, ImageFile
import torch
import transformers
from transformers import StoppingCriteriaList, AutoTokenizer, AutoModel
ImageFile.LOAD_TRUNCATED_IMAGES = True
from demo_asset.assets.css_html_js import custom_css
from demo_asset.gradio_patch import Chatbot as grChatbot
from demo_asset.serve_utils import Stream, Iteratorize
from demo_asset.conversation import CONV_VISION_7132_v2, StoppingCriteriaSub
from demo_asset.download import download_image_thread
max_section = 60
no_change_btn = gr.Button.update()
disable_btn = gr.Button.update(interactive=False)
enable_btn = gr.Button.update(interactive=True)
chat_stream_output = True
article_stream_output = True
def get_urls(caption, exclude):
headers = {'Content-Type': 'application/json'}
json_data = {'caption': caption, 'exclude': exclude, 'need_idxs': True}
response = requests.post('https://lingbi.openxlab.org.cn/image/similar',
headers=headers,
json=json_data)
urls = response.json()['data']['image_urls']
idx = response.json()['data']['indices']
return urls, idx
class Demo_UI:
def __init__(self, folder):
self.llm_model = AutoModel.from_pretrained(folder, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(folder, trust_remote_code=True)
self.llm_model.internlm_tokenizer = tokenizer
self.llm_model.tokenizer = tokenizer
self.llm_model.eval().to('cuda')
self.device = 'cuda'
print(f" load model done: ", type(self.llm_model))
self.eoh = self.llm_model.internlm_tokenizer.decode(
torch.Tensor([103027]), skip_special_tokens=True)
self.eoa = self.llm_model.internlm_tokenizer.decode(
torch.Tensor([103028]), skip_special_tokens=True)
self.soi_id = len(tokenizer) - 1
self.soi_token = '<SOI_TOKEN>'
self.vis_processor = self.llm_model.vis_processor
self.device = 'cuda'
stop_words_ids = [
torch.tensor([943]).to(self.device),
torch.tensor([2917, 44930]).to(self.device),
torch.tensor([45623]).to(self.device), ### new setting
torch.tensor([46323]).to(self.device), ### new setting
torch.tensor([103027]).to(self.device), ### new setting
torch.tensor([103028]).to(self.device), ### new setting
]
self.stopping_criteria = StoppingCriteriaList(
[StoppingCriteriaSub(stops=stop_words_ids)])
self.r2 = re.compile(r'<Seg[0-9]*>')
self.max_txt_len = 1680
def reset(self):
self.output_text = ''
self.caps = {}
self.show_caps = False
self.show_ids = {}
def get_images_xlab(self, caption, loc, exclude):
urls, idxs = get_urls(caption.strip()[:53], exclude)
print(urls[0])
print('download image with url')
download_image_thread(urls,
folder='articles/' + self.title,
index=self.show_ids[loc] * 1000 + loc,
num_processes=4)
print('image downloaded')
return idxs
def generate(self, text, random, beam, max_length, repetition):
input_tokens = self.llm_model.internlm_tokenizer(
text, return_tensors="pt",
add_special_tokens=True).to(self.llm_model.device)
img_embeds = self.llm_model.internlm_model.model.embed_tokens(
input_tokens.input_ids)
with torch.no_grad():
with self.llm_model.maybe_autocast():
outputs = self.llm_model.internlm_model.generate(
inputs_embeds=img_embeds,
stopping_criteria=self.stopping_criteria,
do_sample=random,
num_beams=beam,
max_length=max_length,
repetition_penalty=float(repetition),
)
output_text = self.llm_model.internlm_tokenizer.decode(
outputs[0][1:], add_special_tokens=False)
output_text = output_text.split('<TOKENS_UNUSED_1>')[0]
return output_text
def generate_text(self, title, beam, repetition, text_num, random):
text = ' <|User|>:根据给定标题写一个图文并茂,不重复的文章:{}\n'.format(
title) + self.eoh + ' <|Bot|>:'
print('random generate:{}'.format(random))
output_text = self.generate(text, random, beam, text_num, repetition)
return output_text
def generate_loc(self, text_sections, image_num, progress):
full_txt = ''.join(text_sections)
input_text = f' <|User|>:给定文章"{full_txt}" 根据上述文章,选择适合插入图像的{image_num}行' + ' \n<TOKENS_UNUSED_0> <|Bot|>:适合插入图像的行是'
for _ in progress.tqdm([1], desc="image spotting"):
output_text = self.generate(input_text,
random=False,
beam=5,
max_length=300,
repetition=1.)
inject_text = '适合插入图像的行是' + output_text
print(inject_text)
locs = []
for m in self.r2.findall(inject_text):
locs.append(int(m[4:-1]))
print(locs)
return inject_text, locs
def generate_cap(self, text_sections, pos, progress):
pasts = ''
caps = {}
for idx, po in progress.tqdm(enumerate(pos), desc="image captioning"):
full_txt = ''.join(text_sections[:po + 2])
if idx > 0:
past = pasts[:-2] + '。'
else:
past = pasts
input_text = f' <|User|>: 给定文章"{full_txt}" {past}给出适合在<Seg{po}>后插入的图像对应的标题。' + ' \n<TOKENS_UNUSED_0> <|Bot|>: 标题是"'
cap_text = self.generate(input_text,
random=False,
beam=1,
max_length=100,
repetition=5.)
cap_text = cap_text.split('"')[0].strip()
print(cap_text)
caps[po] = cap_text
if idx == 0:
pasts = f'现在<Seg{po}>后插入图像对应的标题是"{cap_text}", '
else:
pasts += f'<Seg{po}>后插入图像对应的标题是"{cap_text}", '
print(caps)
return caps
def generate_loc_cap(self, text_sections, image_num, progress):
inject_text, locs = self.generate_loc(text_sections, image_num,
progress)
caps = self.generate_cap(text_sections, locs, progress)
return caps
def interleav_wrap(self, img_embeds, text):
batch_size = img_embeds.shape[0]
im_len = img_embeds.shape[1]
text = text[0]
text = text.replace('<Img>', '')
text = text.replace('</Img>', '')
parts = text.split('<ImageHere>')
assert batch_size + 1 == len(parts)
warp_tokens = []
warp_embeds = []
warp_attns = []
soi = (torch.ones([1, 1]) * self.soi_id).long().to(img_embeds.device)
soi_embeds = self.llm_model.internlm_model.model.embed_tokens(soi)
temp_len = 0
for idx, part in enumerate(parts):
if len(part) > 0:
part_tokens = self.llm_model.internlm_tokenizer(
part, return_tensors="pt",
add_special_tokens=False).to(img_embeds.device)
part_embeds = self.llm_model.internlm_model.model.embed_tokens(
part_tokens.input_ids)
warp_tokens.append(part_tokens.input_ids)
warp_embeds.append(part_embeds)
temp_len += part_embeds.shape[1]
if idx < batch_size:
warp_tokens.append(soi.expand(-1, img_embeds[idx].shape[0]))
# warp_tokens.append(soi.expand(-1, img_embeds[idx].shape[0] + 1))
# warp_embeds.append(soi_embeds) ### 1, 1, C
warp_embeds.append(img_embeds[idx].unsqueeze(0)) ### 1, 34, C
temp_len += im_len
if temp_len > self.max_txt_len:
break
warp_embeds = torch.cat(warp_embeds, dim=1)
return warp_embeds[:, :self.max_txt_len].to(img_embeds.device)
def align_text(self, samples):
text_new = []
text = [t + self.eoa + ' </s>' for t in samples["text_input"]]
for i in range(len(text)):
temp = text[i]
temp = temp.replace('###Human', '<|User|>')
temp = temp.replace('### Human', '<|User|>')
temp = temp.replace('<|User|> :', '<|User|>:')
temp = temp.replace('<|User|>: ', '<|User|>:')
temp = temp.replace('<|User|>', ' <|User|>')
temp = temp.replace('###Assistant', '<|Bot|>')
temp = temp.replace('### Assistant', '<|Bot|>')
temp = temp.replace('<|Bot|> :', '<|Bot|>:')
temp = temp.replace('<|Bot|>: ', '<|Bot|>:')
temp = temp.replace('<|Bot|>', self.eoh + ' <|Bot|>')
if temp.find('<|User|>') > temp.find('<|Bot|>'):
temp = temp.replace(' <|User|>', self.eoa + ' <|User|>')
text_new.append(temp)
#print (temp)
return text_new
def model_select_image(self, output_text, caps, root, progress):
print('model_select_image')
pre_text = ''
pre_img = []
pre_text_list = []
ans2idx = {'A': 0, 'B': 1, 'C': 2, 'D': 3}
selected = {k: 0 for k in caps.keys()}
for i, text in enumerate(output_text.split('\n')):
pre_text += text + '\n'
if i in caps:
images = copy.deepcopy(pre_img)
for j in range(4):
image = Image.open(
os.path.join(
root, f'temp_{self.show_ids[i] * 1000 + i}_{j}.png'
)).convert("RGB")
image = self.vis_processor(image)
images.append(image)
images = torch.stack(images, dim=0)
pre_text_list.append(pre_text)
pre_text = ''
images = images.cuda()
instruct = ' <|User|>:根据给定上下文和候选图像,选择合适的配图:'
input_text = '<ImageHere>'.join(
pre_text_list
) + '\n\n候选图像包括: A.<ImageHere>\nB.<ImageHere>\nC.<ImageHere>\nD.<ImageHere>\n\n<TOKENS_UNUSED_0> <|Bot|>:最合适的图是'
input_text = instruct + input_text
samples = {}
samples['text_input'] = [input_text]
self.llm_model.debug_flag = 0
with torch.no_grad():
with torch.cuda.amp.autocast():
img_embeds = self.llm_model.encode_img(images)
input_text = self.align_text(samples)
img_embeds = self.interleav_wrap(
img_embeds, input_text)
bos = torch.ones(
[1, 1]) * self.llm_model.internlm_tokenizer.bos_token_id
bos = bos.long().to(images.device)
meta_embeds = self.llm_model.internlm_model.model.embed_tokens(
bos)
inputs_embeds = torch.cat([meta_embeds, img_embeds], dim=1)
with torch.cuda.amp.autocast():
outputs = self.llm_model.internlm_model.generate(
inputs_embeds=inputs_embeds[:, :-2],
do_sample=False,
num_beams=5,
max_length=10,
repetition_penalty=1.,
)
out_text = self.llm_model.internlm_tokenizer.decode(
outputs[0][1:], add_special_tokens=False)
try:
answer = out_text[1] if out_text[0] == ' ' else out_text[0]
pre_img.append(images[len(pre_img) + ans2idx[answer]].cpu())
except:
print('Select fail, use first image')
answer = 'A'
pre_img.append(images[len(pre_img) + ans2idx[answer]].cpu())
selected[i] = ans2idx[answer]
return selected
def show_md(self, text_sections, title, caps, selected, show_cap=False):
md_shows = []
ga_shows = []
btn_shows = []
cap_textboxs, cap_searchs = [], []
editers = []
for i in range(len(text_sections)):
if i in caps:
if show_cap:
md = text_sections[
i] + '\n' + '<div align="center"> <img src="file/articles/{}/temp_{}_{}.png" width = 500/> {} </div>'.format(
title, self.show_ids[i] * 1000 + i, selected[i],
caps[i])
else:
md = text_sections[
i] + '\n' + '<div align="center"> <img src="file=articles/{}/temp_{}_{}.png" width = 500/> </div>'.format(
title, self.show_ids[i] * 1000 + i, selected[i])
img_list = [('articles/{}/temp_{}_{}.png'.format(
title, self.show_ids[i] * 1000 + i,
j), 'articles/{}/temp_{}_{}.png'.format(
title, self.show_ids[i] * 1000 + i, j))
for j in range(4)]
ga_show = gr.Gallery.update(visible=True, value=img_list)
ga_shows.append(ga_show)
btn_show = gr.Button.update(visible=True,
value='\U0001f5d1\uFE0F')
cap_textboxs.append(
gr.Textbox.update(visible=True, value=caps[i]))
cap_searchs.append(gr.Button.update(visible=True))
else:
md = text_sections[i]
ga_show = gr.Gallery.update(visible=False, value=[])
ga_shows.append(ga_show)
btn_show = gr.Button.update(visible=True, value='\u2795')
cap_textboxs.append(gr.Textbox.update(visible=False))
cap_searchs.append(gr.Button.update(visible=False))
md_show = gr.Markdown.update(visible=True, value=md)
md_shows.append(md_show)
btn_shows.append(btn_show)
editers.append(gr.update(visible=True))
print(i, md)
md_hides = []
ga_hides = []
btn_hides = []
for i in range(max_section - len(text_sections)):
md_hide = gr.Markdown.update(visible=False, value='')
md_hides.append(md_hide)
btn_hide = gr.Button.update(visible=False)
btn_hides.append(btn_hide)
editers.append(gr.update(visible=False))
for i in range(max_section - len(ga_shows)):
ga_hide = gr.Gallery.update(visible=False, value=[])
ga_hides.append(ga_hide)
cap_textboxs.append(gr.Textbox.update(visible=False))
cap_searchs.append(gr.Button.update(visible=False))
return md_shows + md_hides + ga_shows + ga_hides + btn_shows + btn_hides + cap_textboxs + cap_searchs + editers, md_shows
def generate_article(self,
title,
beam,
repetition,
text_num,
msi,
random,
progress=gr.Progress()):
self.reset()
self.title = title
if article_stream_output:
text = ' <|User|>:根据给定标题写一个图文并茂,不重复的文章:{}\n'.format(
title) + self.eoh + ' <|Bot|>:'
input_tokens = self.llm_model.internlm_tokenizer(
text, return_tensors="pt",
add_special_tokens=True).to(self.llm_model.device)
img_embeds = self.llm_model.internlm_model.model.embed_tokens(
input_tokens.input_ids)
generate_params = dict(
inputs_embeds=img_embeds,
num_beams=beam,
do_sample=random,
stopping_criteria=self.stopping_criteria,
repetition_penalty=float(repetition),
max_length=text_num,
bos_token_id=self.llm_model.internlm_tokenizer.bos_token_id,
eos_token_id=self.llm_model.internlm_tokenizer.eos_token_id,
pad_token_id=self.llm_model.internlm_tokenizer.pad_token_id,
)
output_text = "▌"
with self.generate_with_streaming(**generate_params) as generator:
for output in generator:
decoded_output = self.llm_model.internlm_tokenizer.decode(
output[1:])
if output[-1] in [
self.llm_model.internlm_tokenizer.eos_token_id
]:
break
output_text = decoded_output.replace('\n', '\n\n') + "▌"
yield (output_text,) + (gr.Markdown.update(visible=False),) * (max_section - 1) + (gr.Gallery.update(visible=False),) * max_section + \
(gr.Button.update(visible=False),) * max_section + (gr.Textbox.update(visible=False),) * max_section + (gr.Button.update(visible=False),) * max_section + \
(gr.update(visible=False),) * max_section + (disable_btn,) * 2
time.sleep(0.03)
output_text = output_text[:-1]
yield (output_text,) + (gr.Markdown.update(visible=False),) * (max_section - 1) + (gr.Gallery.update(visible=False),) * max_section + \
(gr.Button.update(visible=False),) * max_section + (gr.Textbox.update(visible=False),) * max_section + (gr.Button.update(visible=False),) * max_section +\
(gr.update(visible=False),) * max_section + (disable_btn,) * 2
else:
output_text = self.generate_text(title, beam, repetition, text_num,
random)
print(output_text)
output_text = re.sub(r'(\n[ \t]*)+', '\n', output_text)
if output_text[-1] == '\n':
output_text = output_text[:-1]
print(output_text)
output_text = '\n'.join(output_text.split('\n')[:max_section])
text_sections = output_text.split('\n')
idx_text_sections = [
f'<Seg{i}>' + ' ' + it + '\n' for i, it in enumerate(text_sections)
]
caps = self.generate_loc_cap(idx_text_sections, '', progress)
#caps = {0: '成都的三日游路线图,包括春熙路、太古里、IFS国金中心、大慈寺、宽窄巷子、奎星楼街、九眼桥(酒吧一条街)、武侯祠、锦里、杜甫草堂、浣花溪公园、青羊宫、金沙遗址博物馆、文殊院、人民公园、熊猫基地、望江楼公园、东郊记忆、建设路小吃街、电子科大清水河校区、三圣乡万福花卉市场、龙湖滨江天街购物广场和返程。', 2: '春熙路的繁华景象,各种时尚潮流的品牌店和美食餐厅鳞次栉比。', 4: 'IFS国金中心的豪华购物中心,拥有众多国际知名品牌的旗舰店和专卖店,同时还有电影院、健身房 配套设施。', 6: '春熙路上的著名景点——太古里,是一个集购物、餐饮、娱乐于一体的高端时尚街区,也是成都著名的网红打卡地之一。', 8: '大慈寺的外观,是一座历史悠久的佛教寺庙,始建于唐朝,有着深厚的文化底蕴和历史价值。'}
#self.show_ids = {k:0 for k in caps.keys()}
self.show_ids = {k: 1 for k in caps.keys()}
print(caps)
self.ex_idxs = []
for loc, cap in progress.tqdm(caps.items(), desc="download image"):
#self.show_ids[loc] += 1
idxs = self.get_images_xlab(cap, loc, self.ex_idxs)
self.ex_idxs.extend(idxs)
if msi:
self.selected = self.model_select_image(output_text, caps,
'articles/' + title,
progress)
else:
self.selected = {k: 0 for k in caps.keys()}
components, md_shows = self.show_md(text_sections, title, caps,
self.selected)
self.show_caps = False
self.output_text = output_text
self.caps = caps
if article_stream_output:
yield components + [enable_btn] * 2
else:
return components + [enable_btn] * 2
def adjust_img(self, img_num, progress=gr.Progress()):
text_sections = self.output_text.split('\n')
idx_text_sections = [
f'<Seg{i}>' + ' ' + it + '\n' for i, it in enumerate(text_sections)
]
img_num = min(img_num, len(text_sections))
caps = self.generate_loc_cap(idx_text_sections, int(img_num), progress)
#caps = {1:'318川藏线沿途的风景照片', 4:'泸定桥的全景照片', 6:'折多山垭口的全景照片', 8:'稻城亚丁机场的全景照片', 10:'姊妹湖的全景照片'}
print(caps)
sidxs = []
for loc, cap in caps.items():
if loc in self.show_ids:
self.show_ids[loc] += 1
else:
self.show_ids[loc] = 1
idxs = self.get_images_xlab(cap, loc, sidxs)
sidxs.extend(idxs)
self.sidxs = sidxs
self.selected = {k: 0 for k in caps.keys()}
components, md_shows = self.show_md(text_sections, self.title, caps,
self.selected)
self.caps = caps
return components
def add_delete_image(self, text, status, index):
index = int(index)
if status == '\U0001f5d1\uFE0F':
if index in self.caps:
self.caps.pop(index)
self.selected.pop(index)
md_show = gr.Markdown.update(value=text.split('\n')[0])
gallery = gr.Gallery.update(visible=False, value=[])
btn_show = gr.Button.update(value='\u2795')
cap_textbox = gr.Textbox.update(visible=False)
cap_search = gr.Button.update(visible=False)
else:
md_show = gr.Markdown.update()
gallery = gr.Gallery.update(visible=True, value=[])
btn_show = gr.Button.update(value='\U0001f5d1\uFE0F')
cap_textbox = gr.Textbox.update(visible=True)
cap_search = gr.Button.update(visible=True)
return md_show, gallery, btn_show, cap_textbox, cap_search
def search_image(self, text, index):
index = int(index)
if text == '':
return gr.Gallery.update()
if index in self.show_ids:
self.show_ids[index] += 1
else:
self.show_ids[index] = 1
self.caps[index] = text
idxs = self.get_images_xlab(text, index, self.ex_idxs)
self.ex_idxs.extend(idxs)
img_list = [('articles/{}/temp_{}_{}.png'.format(
self.title, self.show_ids[index] * 1000 + index,
j), 'articles/{}/temp_{}_{}.png'.format(
self.title, self.show_ids[index] * 1000 + index, j))
for j in range(4)]
ga_show = gr.Gallery.update(visible=True, value=img_list)
return ga_show
def replace_image(self, article, index, evt: gr.SelectData):
index = int(index)
self.selected[index] = evt.index
if '<div align="center">' in article:
return re.sub(r'file=.*.png', 'file={}'.format(evt.value), article)
else:
return article + '\n' + '<div align="center"> <img src="file={}" width = 500/> </div>'.format(
evt.value)
def add_delete_caption(self):
self.show_caps = False if self.show_caps else True
text_sections = self.output_text.split('\n')
components, _ = self.show_md(text_sections,
self.title,
self.caps,
selected=self.selected,
show_cap=self.show_caps)
return components
def save(self):
folder = 'save_articles/' + self.title
if os.path.exists(folder):
for item in os.listdir(folder):
os.remove(os.path.join(folder, item))
os.makedirs(folder, exist_ok=True)
save_text = ''
count = 0
if len(self.output_text) > 0:
text_sections = self.output_text.split('\n')
for i in range(len(text_sections)):
if i in self.caps:
if self.show_caps:
md = text_sections[
i] + '\n' + '<div align="center"> <img src="temp_{}_{}.png" width = 500/> {} </div>'.format(
self.show_ids[i] * 1000 + i, self.selected[i],
self.caps[i])
else:
md = text_sections[
i] + '\n' + '<div align="center"> <img src="temp_{}_{}.png" width = 500/> </div>'.format(
self.show_ids[i] * 1000 + i, self.selected[i])
count += 1
else:
md = text_sections[i]
save_text += md + '\n\n'
save_text = save_text[:-2]
with open(os.path.join(folder, 'io.MD'), 'w') as f:
f.writelines(save_text)
for k in self.caps.keys():
shutil.copy(
os.path.join(
'articles', self.title,
f'temp_{self.show_ids[k] * 1000 + k}_{self.selected[k]}.png'
), folder)
archived = shutil.make_archive(folder, 'zip', folder)
return archived
def get_context_emb(self, state, img_list):
prompt = state.get_prompt()
print(prompt)
prompt_segs = prompt.split('<Img><ImageHere></Img>')
assert len(prompt_segs) == len(
img_list
) + 1, "Unmatched numbers of image placeholders and images."
seg_tokens = [
self.llm_model.internlm_tokenizer(seg,
return_tensors="pt",
add_special_tokens=i == 0).to(
self.device).input_ids
for i, seg in enumerate(prompt_segs)
]
seg_embs = [
self.llm_model.internlm_model.model.embed_tokens(seg_t)
for seg_t in seg_tokens
]
mixed_embs = [
emb for pair in zip(seg_embs[:-1], img_list) for emb in pair
] + [seg_embs[-1]]
mixed_embs = torch.cat(mixed_embs, dim=1)
return mixed_embs
def chat_ask(self, state, img_list, text, image):
print(1111)
state.skip_next = False
if len(text) <= 0 and image is None:
state.skip_next = True
return (state, img_list, state.to_gradio_chatbot(), "",
None) + (no_change_btn, ) * 2
if image is not None:
image_pt = self.vis_processor(image).unsqueeze(0).to(0)
image_emb = self.llm_model.encode_img(image_pt)
img_list.append(image_emb)
state.append_message(state.roles[0],
["<Img><ImageHere></Img>", image])
if len(state.messages) > 0 and state.messages[-1][0] == state.roles[
0] and isinstance(state.messages[-1][1], list):
#state.messages[-1][1] = ' '.join([state.messages[-1][1], text])
state.messages[-1][1][0] = ' '.join(
[state.messages[-1][1][0], text])
else:
state.append_message(state.roles[0], text)
print(state.messages)
state.append_message(state.roles[1], None)
return (state, img_list, state.to_gradio_chatbot(), "",
None) + (disable_btn, ) * 2
def generate_with_callback(self, callback=None, **kwargs):
kwargs.setdefault("stopping_criteria",
transformers.StoppingCriteriaList())
kwargs["stopping_criteria"].append(Stream(callback_func=callback))
with torch.no_grad():
with self.llm_model.maybe_autocast():
self.llm_model.internlm_model.generate(**kwargs)
def generate_with_streaming(self, **kwargs):
return Iteratorize(self.generate_with_callback, kwargs, callback=None)
def chat_answer(self, state, img_list, max_output_tokens,
repetition_penalty, num_beams, do_sample):
# text = '图片中是一幅油画,描绘了红军长征的场景。画面中,一群红军战士正在穿过一片草地,他们身后的旗帜在风中飘扬。'
# for i in range(len(text)):
# state.messages[-1][-1] = text[:i+1] + "▌"
# yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 2
# state.messages[-1][-1] = text[:i + 1]
# yield (state, state.to_gradio_chatbot()) + (enable_btn, ) * 2
# return
if state.skip_next:
return (state, state.to_gradio_chatbot()) + (no_change_btn, ) * 2
embs = self.get_context_emb(state, img_list)
if chat_stream_output:
generate_params = dict(
inputs_embeds=embs,
num_beams=num_beams,
do_sample=do_sample,
stopping_criteria=self.stopping_criteria,
repetition_penalty=float(repetition_penalty),
max_length=max_output_tokens,
bos_token_id=self.llm_model.internlm_tokenizer.bos_token_id,
eos_token_id=self.llm_model.internlm_tokenizer.eos_token_id,
pad_token_id=self.llm_model.internlm_tokenizer.pad_token_id,
)
state.messages[-1][-1] = "▌"
with self.generate_with_streaming(**generate_params) as generator:
for output in generator:
decoded_output = self.llm_model.internlm_tokenizer.decode(
output[1:])
if output[-1] in [
self.llm_model.internlm_tokenizer.eos_token_id, 333, 497
]:
break
state.messages[-1][-1] = decoded_output + "▌"
yield (state,
state.to_gradio_chatbot()) + (disable_btn, ) * 2
time.sleep(0.03)
state.messages[-1][-1] = state.messages[-1][-1][:-1]
yield (state, state.to_gradio_chatbot()) + (enable_btn, ) * 2
return
else:
outputs = self.llm_model.internlm_model.generate(
inputs_embeds=embs,
max_new_tokens=max_output_tokens,
stopping_criteria=self.stopping_criteria,
num_beams=num_beams,
#temperature=float(temperature),
do_sample=do_sample,
repetition_penalty=float(repetition_penalty),
bos_token_id=self.llm_model.internlm_tokenizer.bos_token_id,
eos_token_id=self.llm_model.internlm_tokenizer.eos_token_id,
pad_token_id=self.llm_model.internlm_tokenizer.pad_token_id,
)
output_token = outputs[0]
if output_token[0] == 0:
output_token = output_token[1:]
output_text = self.llm_model.internlm_tokenizer.decode(
output_token, add_special_tokens=False)
print(output_text)
output_text = output_text.split('<TOKENS_UNUSED_1>')[
0] # remove the stop sign '###'
output_text = output_text.split('Assistant:')[-1].strip()
output_text = output_text.replace("<s>", "")
state.messages[-1][1] = output_text
return (state, state.to_gradio_chatbot()) + (enable_btn, ) * 2
def clear_answer(self, state):
state.messages[-1][-1] = None
return (state, state.to_gradio_chatbot())
def chat_clear_history(self):
state = CONV_VISION_7132_v2.copy()
return (state, [], state.to_gradio_chatbot(), "",
None) + (disable_btn, ) * 2
def load_demo():
state = CONV_VISION_7132_v2.copy()
return (state, [], gr.Chatbot.update(visible=True),
gr.Textbox.update(visible=True), gr.Button.update(visible=True),
gr.Row.update(visible=True), gr.Accordion.update(visible=True))
def change_language(lang):
if lang == '中文':
lang_btn = gr.update(value='English')
title = gr.update(label='根据给定标题写一个图文并茂的文章:')
btn = gr.update(value='生成')
parameter_article = gr.update(label='高级设置')
beam = gr.update(label='集束大小')
repetition = gr.update(label='重复惩罚')
text_num = gr.update(label='最多输出字数')
msi = gr.update(label='模型选图')
random = gr.update(label='采样')
img_num = gr.update(label='生成文章后,可选择全文配图数量')
adjust_btn = gr.update(value='固定数量配图')
cap_searchs, editers = [], []
for _ in range(max_section):
cap_searchs.append(gr.update(value='搜索'))
editers.append(gr.update(label='编辑'))
save_btn = gr.update(value='文章下载')
save_file = gr.update(label='文章下载')
parameter_chat = gr.update(label='参数')
chat_text_num = gr.update(label='最多输出字数')
chat_beam = gr.update(label='集束大小')
chat_repetition = gr.update(label='重复惩罚')
chat_random = gr.update(label='采样')
chat_textbox = gr.update(placeholder='输入聊天内容并回车')
submit_btn = gr.update(value='提交')
regenerate_btn = gr.update(value='🔄 重新生成')
clear_btn = gr.update(value='🗑️ 清空聊天框')
elif lang == 'English':
lang_btn = gr.update(value='中文')
title = gr.update(
label='Write an illustrated article based on the given title:')
btn = gr.update(value='Submit')
parameter_article = gr.update(label='Advanced Settings')
beam = gr.update(label='Beam Size')
repetition = gr.update(label='Repetition_penalty')
text_num = gr.update(label='Max output tokens')
msi = gr.update(label='Model selects images')
random = gr.update(label='Do_sample')
img_num = gr.update(
label=
'Select the number of the inserted image after article generation.'
)
adjust_btn = gr.update(value='Insert a fixed number of images')
cap_searchs, editers = [], []
for _ in range(max_section):
cap_searchs.append(gr.update(value='Search'))
editers.append(gr.update(label='edit'))
save_btn = gr.update(value='Save article')
save_file = gr.update(label='Save article')
parameter_chat = gr.update(label='Parameters')
chat_text_num = gr.update(label='Max output tokens')
chat_beam = gr.update(label='Beam Size')
chat_repetition = gr.update(label='Repetition_penalty')
chat_random = gr.update(label='Do_sample')
chat_textbox = gr.update(placeholder='Enter text and press ENTER')
submit_btn = gr.update(value='Submit')
regenerate_btn = gr.update(value='🔄 Regenerate')
clear_btn = gr.update(value='🗑️ Clear history')
return [lang_btn, title, btn, parameter_article, beam, repetition, text_num, msi, random, img_num, adjust_btn] +\
cap_searchs + editers + [save_btn, save_file] +[parameter_chat, chat_text_num, chat_beam, chat_repetition, chat_random] + \
[chat_textbox, submit_btn, regenerate_btn, clear_btn]
parser = argparse.ArgumentParser()
parser.add_argument("--folder", default='internlm/internlm-xcomposer-7b')
parser.add_argument("--private", default=False, action='store_true')
args = parser.parse_args()
demo_ui = Demo_UI(args.folder)
with gr.Blocks(css=custom_css, title='浦语·灵笔 (InternLM-XComposer)') as demo:
with gr.Row():
with gr.Column(scale=20):
#gr.HTML("""<h1 align="center" id="space-title" style="font-size:35px;">🤗 浦语·灵笔 (InternLM-XComposer)</h1>""")
gr.HTML(
"""<h1 align="center"><img src="https://raw.githubusercontent.com/panzhang0212/interleaved_io/main/logo.png", alt="InternLM-XComposer" border="0" style="margin: 0 auto; height: 200px;" /></a> </h1>"""
)
with gr.Column(scale=1, min_width=100):
lang_btn = gr.Button("中文")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("📝 创作图文并茂文章 (Write Interleaved-text-image Article)"):
with gr.Row():
title = gr.Textbox(
label=
'Write an illustrated article based on the given title:',
scale=2)
btn = gr.Button("Submit", scale=1)
with gr.Row():
img_num = gr.Slider(
minimum=1.0,
maximum=30.0,
value=5.0,
step=1.0,
scale=2,
label=
'Select the number of the inserted image after article generation.'
)
adjust_btn = gr.Button('Insert a fixed number of images',
interactive=False,
scale=1)
with gr.Row():
with gr.Column(scale=1):
with gr.Accordion("Advanced Settings",
open=False,
visible=True) as parameter_article:
beam = gr.Slider(minimum=1.0,
maximum=6.0,
value=5.0,
step=1.0,
label='Beam Size')
repetition = gr.Slider(minimum=0.0,
maximum=10.0,
value=5.0,
step=0.1,
label='Repetition_penalty')
text_num = gr.Slider(minimum=100.0,
maximum=2000.0,
value=1000.0,
step=1.0,
label='Max output tokens')
msi = gr.Checkbox(value=True,
label='Model selects images')
random = gr.Checkbox(label='Do_sample')
with gr.Column(scale=1):
gr.Examples(
examples=[["又见敦煌"], ["星链新闻稿"], ["如何养好一只宠物"],
["Shanghai Travel Guide in English"], ["Travel guidance of London in English"], ["Advertising for Genshin Impact in English"]],
inputs=[title],
)
articles = []
gallerys = []
add_delete_btns = []
cap_textboxs = []
cap_searchs = []
editers = []
with gr.Column():
for i in range(max_section):
with gr.Row():
visible = True if i == 0 else False
with gr.Column(scale=2):
article = gr.Markdown(visible=visible,
elem_classes='feedback')
articles.append(article)
with gr.Column(scale=1):
with gr.Accordion('edit',
open=False,
visible=False) as editer:
with gr.Row():
cap_textbox = gr.Textbox(show_label=False,
interactive=True,
scale=6,
visible=False)
cap_search = gr.Button(value="Search",
visible=False,
scale=1)
with gr.Row():
gallery = gr.Gallery(visible=False,
columns=2,
height='auto')
add_delete_btn = gr.Button(visible=False)
gallery.select(demo_ui.replace_image, [
articles[i],
gr.Number(value=i, visible=False)
], articles[i])
gallerys.append(gallery)
add_delete_btns.append(add_delete_btn)
cap_textboxs.append(cap_textbox)
cap_searchs.append(cap_search)
editers.append(editer)
save_btn = gr.Button("Save article")
save_file = gr.File(label="Save article")
for i in range(max_section):
add_delete_btns[i].click(demo_ui.add_delete_image,
inputs=[
articles[i],
add_delete_btns[i],
gr.Number(value=i,
visible=False)
],
outputs=[
articles[i], gallerys[i],
add_delete_btns[i],
cap_textboxs[i],
cap_searchs[i]
])
cap_searchs[i].click(demo_ui.search_image,
inputs=[
cap_textboxs[i],
gr.Number(value=i, visible=False)
],
outputs=gallerys[i])
btn.click(
demo_ui.generate_article,
inputs=[title, beam, repetition, text_num, msi, random],
outputs=articles + gallerys + add_delete_btns +
cap_textboxs + cap_searchs + editers + [btn, adjust_btn])
# cap_btn.click(demo_ui.add_delete_caption, inputs=None, outputs=articles)
save_btn.click(demo_ui.save, inputs=None, outputs=save_file)
adjust_btn.click(demo_ui.adjust_img,
inputs=img_num,
outputs=articles + gallerys +
add_delete_btns + cap_textboxs + cap_searchs +
editers)
with gr.TabItem("💬 多模态对话 (Multimodal Chat)", elem_id="chat", id=0):
chat_state = gr.State()
img_list = gr.State()
with gr.Row():
with gr.Column(scale=3):
imagebox = gr.Image(type="pil")
with gr.Accordion("Parameters", open=True,
visible=False) as parameter_row:
chat_max_output_tokens = gr.Slider(
minimum=0,
maximum=1024,
value=512,
step=64,
interactive=True,
label="Max output tokens",
)
chat_num_beams = gr.Slider(
minimum=1,
maximum=5,
value=3,
step=1,
interactive=True,
label="Beam Size",
)
chat_repetition_penalty = gr.Slider(
minimum=1,
maximum=5,
value=1,
step=0.1,
interactive=True,
label="Repetition_penalty",
)
# chat_temperature = gr.Slider(minimum=0, maximum=1, value=1, step=0.1, interactive=True,
# label="Temperature", )
chat_do_sample = gr.Checkbox(interactive=True,
value=True,
label="Do_sample")
with gr.Column(scale=6):
chatbot = grChatbot(elem_id="chatbot",
visible=False,
height=750)
with gr.Row():
with gr.Column(scale=8):
chat_textbox = gr.Textbox(
show_label=False,
placeholder="Enter text and press ENTER",
visible=False).style(container=False)
with gr.Column(scale=1, min_width=60):
submit_btn = gr.Button(value="Submit",
visible=False)
with gr.Row(visible=True) as button_row:
regenerate_btn = gr.Button(value="🔄 Regenerate",
interactive=False)
clear_btn = gr.Button(value="🗑️ Clear history",
interactive=False)
btn_list = [regenerate_btn, clear_btn]
parameter_list = [
chat_max_output_tokens, chat_repetition_penalty,
chat_num_beams, chat_do_sample
]
chat_textbox.submit(
demo_ui.chat_ask,
[chat_state, img_list, chat_textbox, imagebox],
[chat_state, img_list, chatbot, chat_textbox, imagebox] +
btn_list).then(demo_ui.chat_answer,
[chat_state, img_list] + parameter_list,
[chat_state, chatbot] + btn_list)
submit_btn.click(
demo_ui.chat_ask,
[chat_state, img_list, chat_textbox, imagebox],
[chat_state, img_list, chatbot, chat_textbox, imagebox] +
btn_list).then(demo_ui.chat_answer,
[chat_state, img_list] + parameter_list,
[chat_state, chatbot] + btn_list)
regenerate_btn.click(demo_ui.clear_answer, chat_state,
[chat_state, chatbot]).then(
demo_ui.chat_answer,
[chat_state, img_list] + parameter_list,
[chat_state, chatbot] + btn_list)
clear_btn.click(
demo_ui.chat_clear_history, None,
[chat_state, img_list, chatbot, chat_textbox, imagebox] +
btn_list)
demo.load(load_demo, None, [
chat_state, img_list, chatbot, chat_textbox, submit_btn,
parameter_row
])
lang_btn.click(change_language, inputs=lang_btn, outputs=[lang_btn, title, btn, parameter_article] +\
[beam, repetition, text_num, msi, random, img_num, adjust_btn] + cap_searchs + editers +\
[save_btn, save_file] + [parameter_row, chat_max_output_tokens, chat_num_beams, chat_repetition_penalty, chat_do_sample] +\
[chat_textbox, submit_btn, regenerate_btn, clear_btn])
demo.queue(concurrency_count=8, status_update_rate=10, api_open=False)
if __name__ == "__main__":
demo.launch()
|