File size: 49,701 Bytes
c195a6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
import os
import re
import sys
sys.path.insert(0, '.')
sys.path.insert(0, '..')

import argparse
import gradio as gr
os.environ["GRADIO_TEMP_DIR"] = os.path.join(os.getcwd(), 'tmp')
import copy
import time
import shutil
import requests
from PIL import Image, ImageFile
import torch
import transformers
from transformers import StoppingCriteriaList, AutoTokenizer, AutoModel

ImageFile.LOAD_TRUNCATED_IMAGES = True

from demo_asset.assets.css_html_js import custom_css
from demo_asset.gradio_patch import Chatbot as grChatbot
from demo_asset.serve_utils import Stream, Iteratorize
from demo_asset.conversation import CONV_VISION_7132_v2, StoppingCriteriaSub
from demo_asset.download import download_image_thread

max_section = 60
no_change_btn = gr.Button.update()
disable_btn = gr.Button.update(interactive=False)
enable_btn = gr.Button.update(interactive=True)
chat_stream_output = True
article_stream_output = True


def get_urls(caption, exclude):
    headers = {'Content-Type': 'application/json'}
    json_data = {'caption': caption, 'exclude': exclude, 'need_idxs': True}
    response = requests.post('https://lingbi.openxlab.org.cn/image/similar',
                             headers=headers,
                             json=json_data)
    urls = response.json()['data']['image_urls']
    idx = response.json()['data']['indices']
    return urls, idx


class Demo_UI:
    def __init__(self, folder):
        self.llm_model = AutoModel.from_pretrained(folder, trust_remote_code=True)
        tokenizer = AutoTokenizer.from_pretrained(folder, trust_remote_code=True)

        self.llm_model.internlm_tokenizer = tokenizer
        self.llm_model.tokenizer = tokenizer
        self.llm_model.eval().to('cuda')
        self.device = 'cuda'
        print(f" load model done: ", type(self.llm_model))

        self.eoh = self.llm_model.internlm_tokenizer.decode(
            torch.Tensor([103027]), skip_special_tokens=True)
        self.eoa = self.llm_model.internlm_tokenizer.decode(
            torch.Tensor([103028]), skip_special_tokens=True)
        self.soi_id = len(tokenizer) - 1
        self.soi_token = '<SOI_TOKEN>'

        self.vis_processor = self.llm_model.vis_processor
        self.device = 'cuda'

        stop_words_ids = [
            torch.tensor([943]).to(self.device),
            torch.tensor([2917, 44930]).to(self.device),
            torch.tensor([45623]).to(self.device),  ### new setting
            torch.tensor([46323]).to(self.device),  ### new setting
            torch.tensor([103027]).to(self.device),  ### new setting
            torch.tensor([103028]).to(self.device),  ### new setting
        ]
        self.stopping_criteria = StoppingCriteriaList(
            [StoppingCriteriaSub(stops=stop_words_ids)])
        self.r2 = re.compile(r'<Seg[0-9]*>')
        self.max_txt_len = 1680

    def reset(self):
        self.output_text = ''
        self.caps = {}
        self.show_caps = False
        self.show_ids = {}

    def get_images_xlab(self, caption, loc, exclude):
        urls, idxs = get_urls(caption.strip()[:53], exclude)
        print(urls[0])
        print('download image with url')
        download_image_thread(urls,
                              folder='articles/' + self.title,
                              index=self.show_ids[loc] * 1000 + loc,
                              num_processes=4)
        print('image downloaded')
        return idxs

    def generate(self, text, random, beam, max_length, repetition):
        input_tokens = self.llm_model.internlm_tokenizer(
            text, return_tensors="pt",
            add_special_tokens=True).to(self.llm_model.device)
        img_embeds = self.llm_model.internlm_model.model.embed_tokens(
            input_tokens.input_ids)
        with torch.no_grad():
            with self.llm_model.maybe_autocast():
                outputs = self.llm_model.internlm_model.generate(
                    inputs_embeds=img_embeds,
                    stopping_criteria=self.stopping_criteria,
                    do_sample=random,
                    num_beams=beam,
                    max_length=max_length,
                    repetition_penalty=float(repetition),
                )
        output_text = self.llm_model.internlm_tokenizer.decode(
            outputs[0][1:], add_special_tokens=False)
        output_text = output_text.split('<TOKENS_UNUSED_1>')[0]
        return output_text

    def generate_text(self, title, beam, repetition, text_num, random):
        text = ' <|User|>:根据给定标题写一个图文并茂,不重复的文章:{}\n'.format(
            title) + self.eoh + ' <|Bot|>:'
        print('random generate:{}'.format(random))
        output_text = self.generate(text, random, beam, text_num, repetition)
        return output_text

    def generate_loc(self, text_sections, image_num, progress):
        full_txt = ''.join(text_sections)
        input_text = f' <|User|>:给定文章"{full_txt}" 根据上述文章,选择适合插入图像的{image_num}行' + ' \n<TOKENS_UNUSED_0> <|Bot|>:适合插入图像的行是'

        for _ in progress.tqdm([1], desc="image spotting"):
            output_text = self.generate(input_text,
                                        random=False,
                                        beam=5,
                                        max_length=300,
                                        repetition=1.)
        inject_text = '适合插入图像的行是' + output_text
        print(inject_text)

        locs = []
        for m in self.r2.findall(inject_text):
            locs.append(int(m[4:-1]))
        print(locs)
        return inject_text, locs

    def generate_cap(self, text_sections, pos, progress):
        pasts = ''
        caps = {}
        for idx, po in progress.tqdm(enumerate(pos), desc="image captioning"):
            full_txt = ''.join(text_sections[:po + 2])
            if idx > 0:
                past = pasts[:-2] + '。'
            else:
                past = pasts

            input_text = f' <|User|>: 给定文章"{full_txt}" {past}给出适合在<Seg{po}>后插入的图像对应的标题。' + ' \n<TOKENS_UNUSED_0> <|Bot|>: 标题是"'

            cap_text = self.generate(input_text,
                                     random=False,
                                     beam=1,
                                     max_length=100,
                                     repetition=5.)
            cap_text = cap_text.split('"')[0].strip()
            print(cap_text)
            caps[po] = cap_text

            if idx == 0:
                pasts = f'现在<Seg{po}>后插入图像对应的标题是"{cap_text}", '
            else:
                pasts += f'<Seg{po}>后插入图像对应的标题是"{cap_text}", '

        print(caps)
        return caps

    def generate_loc_cap(self, text_sections, image_num, progress):
        inject_text, locs = self.generate_loc(text_sections, image_num,
                                              progress)
        caps = self.generate_cap(text_sections, locs, progress)
        return caps

    def interleav_wrap(self, img_embeds, text):
        batch_size = img_embeds.shape[0]
        im_len = img_embeds.shape[1]
        text = text[0]
        text = text.replace('<Img>', '')
        text = text.replace('</Img>', '')
        parts = text.split('<ImageHere>')
        assert batch_size + 1 == len(parts)
        warp_tokens = []
        warp_embeds = []
        warp_attns = []
        soi = (torch.ones([1, 1]) * self.soi_id).long().to(img_embeds.device)
        soi_embeds = self.llm_model.internlm_model.model.embed_tokens(soi)
        temp_len = 0

        for idx, part in enumerate(parts):
            if len(part) > 0:
                part_tokens = self.llm_model.internlm_tokenizer(
                    part, return_tensors="pt",
                    add_special_tokens=False).to(img_embeds.device)
                part_embeds = self.llm_model.internlm_model.model.embed_tokens(
                    part_tokens.input_ids)

                warp_tokens.append(part_tokens.input_ids)
                warp_embeds.append(part_embeds)
                temp_len += part_embeds.shape[1]
            if idx < batch_size:
                warp_tokens.append(soi.expand(-1, img_embeds[idx].shape[0]))
                # warp_tokens.append(soi.expand(-1, img_embeds[idx].shape[0] + 1))
                # warp_embeds.append(soi_embeds) ### 1, 1, C
                warp_embeds.append(img_embeds[idx].unsqueeze(0))  ### 1, 34, C
                temp_len += im_len

            if temp_len > self.max_txt_len:
                break

        warp_embeds = torch.cat(warp_embeds, dim=1)

        return warp_embeds[:, :self.max_txt_len].to(img_embeds.device)

    def align_text(self, samples):
        text_new = []
        text = [t + self.eoa + ' </s>' for t in samples["text_input"]]
        for i in range(len(text)):
            temp = text[i]
            temp = temp.replace('###Human', '<|User|>')
            temp = temp.replace('### Human', '<|User|>')
            temp = temp.replace('<|User|> :', '<|User|>:')
            temp = temp.replace('<|User|>: ', '<|User|>:')
            temp = temp.replace('<|User|>', ' <|User|>')

            temp = temp.replace('###Assistant', '<|Bot|>')
            temp = temp.replace('### Assistant', '<|Bot|>')
            temp = temp.replace('<|Bot|> :', '<|Bot|>:')
            temp = temp.replace('<|Bot|>: ', '<|Bot|>:')
            temp = temp.replace('<|Bot|>', self.eoh + ' <|Bot|>')
            if temp.find('<|User|>') > temp.find('<|Bot|>'):
                temp = temp.replace(' <|User|>', self.eoa + ' <|User|>')
            text_new.append(temp)
            #print (temp)
        return text_new

    def model_select_image(self, output_text, caps, root, progress):
        print('model_select_image')
        pre_text = ''
        pre_img = []
        pre_text_list = []
        ans2idx = {'A': 0, 'B': 1, 'C': 2, 'D': 3}
        selected = {k: 0 for k in caps.keys()}
        for i, text in enumerate(output_text.split('\n')):
            pre_text += text + '\n'
            if i in caps:
                images = copy.deepcopy(pre_img)
                for j in range(4):
                    image = Image.open(
                        os.path.join(
                            root, f'temp_{self.show_ids[i] * 1000 + i}_{j}.png'
                        )).convert("RGB")
                    image = self.vis_processor(image)
                    images.append(image)
                images = torch.stack(images, dim=0)

                pre_text_list.append(pre_text)
                pre_text = ''

                images = images.cuda()
                instruct = ' <|User|>:根据给定上下文和候选图像,选择合适的配图:'
                input_text = '<ImageHere>'.join(
                    pre_text_list
                ) + '\n\n候选图像包括: A.<ImageHere>\nB.<ImageHere>\nC.<ImageHere>\nD.<ImageHere>\n\n<TOKENS_UNUSED_0> <|Bot|>:最合适的图是'
                input_text = instruct + input_text
                samples = {}
                samples['text_input'] = [input_text]
                self.llm_model.debug_flag = 0
                with torch.no_grad():
                    with torch.cuda.amp.autocast():
                        img_embeds = self.llm_model.encode_img(images)
                        input_text = self.align_text(samples)
                        img_embeds = self.interleav_wrap(
                            img_embeds, input_text)
                bos = torch.ones(
                    [1, 1]) * self.llm_model.internlm_tokenizer.bos_token_id
                bos = bos.long().to(images.device)
                meta_embeds = self.llm_model.internlm_model.model.embed_tokens(
                    bos)
                inputs_embeds = torch.cat([meta_embeds, img_embeds], dim=1)

                with torch.cuda.amp.autocast():
                    outputs = self.llm_model.internlm_model.generate(
                        inputs_embeds=inputs_embeds[:, :-2],
                        do_sample=False,
                        num_beams=5,
                        max_length=10,
                        repetition_penalty=1.,
                    )
                out_text = self.llm_model.internlm_tokenizer.decode(
                    outputs[0][1:], add_special_tokens=False)

                try:
                    answer = out_text[1] if out_text[0] == ' ' else out_text[0]
                    pre_img.append(images[len(pre_img) + ans2idx[answer]].cpu())
                except:
                    print('Select fail, use first image')
                    answer = 'A'
                    pre_img.append(images[len(pre_img) + ans2idx[answer]].cpu())
                selected[i] = ans2idx[answer]
        return selected

    def show_md(self, text_sections, title, caps, selected, show_cap=False):
        md_shows = []
        ga_shows = []
        btn_shows = []
        cap_textboxs, cap_searchs = [], []
        editers = []
        for i in range(len(text_sections)):
            if i in caps:
                if show_cap:
                    md = text_sections[
                        i] + '\n' + '<div align="center"> <img src="file/articles/{}/temp_{}_{}.png" width = 500/> {} </div>'.format(
                            title, self.show_ids[i] * 1000 + i, selected[i],
                            caps[i])
                else:
                    md = text_sections[
                        i] + '\n' + '<div align="center"> <img src="file=articles/{}/temp_{}_{}.png" width = 500/> </div>'.format(
                            title, self.show_ids[i] * 1000 + i, selected[i])
                img_list = [('articles/{}/temp_{}_{}.png'.format(
                    title, self.show_ids[i] * 1000 + i,
                    j), 'articles/{}/temp_{}_{}.png'.format(
                        title, self.show_ids[i] * 1000 + i, j))
                            for j in range(4)]

                ga_show = gr.Gallery.update(visible=True, value=img_list)
                ga_shows.append(ga_show)

                btn_show = gr.Button.update(visible=True,
                                            value='\U0001f5d1\uFE0F')

                cap_textboxs.append(
                    gr.Textbox.update(visible=True, value=caps[i]))
                cap_searchs.append(gr.Button.update(visible=True))
            else:
                md = text_sections[i]
                ga_show = gr.Gallery.update(visible=False, value=[])
                ga_shows.append(ga_show)

                btn_show = gr.Button.update(visible=True, value='\u2795')
                cap_textboxs.append(gr.Textbox.update(visible=False))
                cap_searchs.append(gr.Button.update(visible=False))

            md_show = gr.Markdown.update(visible=True, value=md)
            md_shows.append(md_show)
            btn_shows.append(btn_show)
            editers.append(gr.update(visible=True))
            print(i, md)

        md_hides = []
        ga_hides = []
        btn_hides = []
        for i in range(max_section - len(text_sections)):
            md_hide = gr.Markdown.update(visible=False, value='')
            md_hides.append(md_hide)

            btn_hide = gr.Button.update(visible=False)
            btn_hides.append(btn_hide)
            editers.append(gr.update(visible=False))

        for i in range(max_section - len(ga_shows)):
            ga_hide = gr.Gallery.update(visible=False, value=[])
            ga_hides.append(ga_hide)
            cap_textboxs.append(gr.Textbox.update(visible=False))
            cap_searchs.append(gr.Button.update(visible=False))

        return md_shows + md_hides + ga_shows + ga_hides + btn_shows + btn_hides + cap_textboxs + cap_searchs + editers, md_shows

    def generate_article(self,
                         title,
                         beam,
                         repetition,
                         text_num,
                         msi,
                         random,
                         progress=gr.Progress()):
        self.reset()
        self.title = title
        if article_stream_output:
            text = ' <|User|>:根据给定标题写一个图文并茂,不重复的文章:{}\n'.format(
                title) + self.eoh + ' <|Bot|>:'
            input_tokens = self.llm_model.internlm_tokenizer(
                text, return_tensors="pt",
                add_special_tokens=True).to(self.llm_model.device)
            img_embeds = self.llm_model.internlm_model.model.embed_tokens(
                input_tokens.input_ids)
            generate_params = dict(
                inputs_embeds=img_embeds,
                num_beams=beam,
                do_sample=random,
                stopping_criteria=self.stopping_criteria,
                repetition_penalty=float(repetition),
                max_length=text_num,
                bos_token_id=self.llm_model.internlm_tokenizer.bos_token_id,
                eos_token_id=self.llm_model.internlm_tokenizer.eos_token_id,
                pad_token_id=self.llm_model.internlm_tokenizer.pad_token_id,
            )
            output_text = "▌"
            with self.generate_with_streaming(**generate_params) as generator:
                for output in generator:
                    decoded_output = self.llm_model.internlm_tokenizer.decode(
                        output[1:])
                    if output[-1] in [
                            self.llm_model.internlm_tokenizer.eos_token_id
                    ]:
                        break
                    output_text = decoded_output.replace('\n', '\n\n') + "▌"
                    yield (output_text,) + (gr.Markdown.update(visible=False),) * (max_section - 1) + (gr.Gallery.update(visible=False),) * max_section + \
                          (gr.Button.update(visible=False),) * max_section + (gr.Textbox.update(visible=False),) * max_section + (gr.Button.update(visible=False),) * max_section + \
                          (gr.update(visible=False),) * max_section + (disable_btn,) * 2
                    time.sleep(0.03)
            output_text = output_text[:-1]
            yield (output_text,) + (gr.Markdown.update(visible=False),) * (max_section - 1) + (gr.Gallery.update(visible=False),) * max_section + \
                  (gr.Button.update(visible=False),) * max_section + (gr.Textbox.update(visible=False),) * max_section + (gr.Button.update(visible=False),) * max_section +\
                  (gr.update(visible=False),) * max_section + (disable_btn,) * 2
        else:
            output_text = self.generate_text(title, beam, repetition, text_num,
                                             random)

        print(output_text)
        output_text = re.sub(r'(\n[ \t]*)+', '\n', output_text)
        if output_text[-1] == '\n':
            output_text = output_text[:-1]
        print(output_text)
        output_text = '\n'.join(output_text.split('\n')[:max_section])

        text_sections = output_text.split('\n')
        idx_text_sections = [
            f'<Seg{i}>' + ' ' + it + '\n' for i, it in enumerate(text_sections)
        ]
        caps = self.generate_loc_cap(idx_text_sections, '', progress)
        #caps = {0: '成都的三日游路线图,包括春熙路、太古里、IFS国金中心、大慈寺、宽窄巷子、奎星楼街、九眼桥(酒吧一条街)、武侯祠、锦里、杜甫草堂、浣花溪公园、青羊宫、金沙遗址博物馆、文殊院、人民公园、熊猫基地、望江楼公园、东郊记忆、建设路小吃街、电子科大清水河校区、三圣乡万福花卉市场、龙湖滨江天街购物广场和返程。', 2: '春熙路的繁华景象,各种时尚潮流的品牌店和美食餐厅鳞次栉比。', 4: 'IFS国金中心的豪华购物中心,拥有众多国际知名品牌的旗舰店和专卖店,同时还有电影院、健身房 配套设施。', 6: '春熙路上的著名景点——太古里,是一个集购物、餐饮、娱乐于一体的高端时尚街区,也是成都著名的网红打卡地之一。', 8: '大慈寺的外观,是一座历史悠久的佛教寺庙,始建于唐朝,有着深厚的文化底蕴和历史价值。'}
        #self.show_ids = {k:0 for k in caps.keys()}
        self.show_ids = {k: 1 for k in caps.keys()}

        print(caps)
        self.ex_idxs = []
        for loc, cap in progress.tqdm(caps.items(), desc="download image"):
            #self.show_ids[loc] += 1
            idxs = self.get_images_xlab(cap, loc, self.ex_idxs)
            self.ex_idxs.extend(idxs)

        if msi:
            self.selected = self.model_select_image(output_text, caps,
                                                    'articles/' + title,
                                                    progress)
        else:
            self.selected = {k: 0 for k in caps.keys()}
        components, md_shows = self.show_md(text_sections, title, caps,
                                            self.selected)
        self.show_caps = False

        self.output_text = output_text
        self.caps = caps
        if article_stream_output:
            yield components + [enable_btn] * 2
        else:
            return components + [enable_btn] * 2

    def adjust_img(self, img_num, progress=gr.Progress()):
        text_sections = self.output_text.split('\n')
        idx_text_sections = [
            f'<Seg{i}>' + ' ' + it + '\n' for i, it in enumerate(text_sections)
        ]
        img_num = min(img_num, len(text_sections))
        caps = self.generate_loc_cap(idx_text_sections, int(img_num), progress)
        #caps = {1:'318川藏线沿途的风景照片', 4:'泸定桥的全景照片', 6:'折多山垭口的全景照片', 8:'稻城亚丁机场的全景照片', 10:'姊妹湖的全景照片'}

        print(caps)
        sidxs = []
        for loc, cap in caps.items():
            if loc in self.show_ids:
                self.show_ids[loc] += 1
            else:
                self.show_ids[loc] = 1
            idxs = self.get_images_xlab(cap, loc, sidxs)
            sidxs.extend(idxs)
        self.sidxs = sidxs

        self.selected = {k: 0 for k in caps.keys()}
        components, md_shows = self.show_md(text_sections, self.title, caps,
                                            self.selected)

        self.caps = caps
        return components

    def add_delete_image(self, text, status, index):
        index = int(index)
        if status == '\U0001f5d1\uFE0F':
            if index in self.caps:
                self.caps.pop(index)
                self.selected.pop(index)
            md_show = gr.Markdown.update(value=text.split('\n')[0])
            gallery = gr.Gallery.update(visible=False, value=[])
            btn_show = gr.Button.update(value='\u2795')
            cap_textbox = gr.Textbox.update(visible=False)
            cap_search = gr.Button.update(visible=False)
        else:
            md_show = gr.Markdown.update()
            gallery = gr.Gallery.update(visible=True, value=[])
            btn_show = gr.Button.update(value='\U0001f5d1\uFE0F')
            cap_textbox = gr.Textbox.update(visible=True)
            cap_search = gr.Button.update(visible=True)

        return md_show, gallery, btn_show, cap_textbox, cap_search

    def search_image(self, text, index):
        index = int(index)
        if text == '':
            return gr.Gallery.update()

        if index in self.show_ids:
            self.show_ids[index] += 1
        else:
            self.show_ids[index] = 1
        self.caps[index] = text
        idxs = self.get_images_xlab(text, index, self.ex_idxs)
        self.ex_idxs.extend(idxs)

        img_list = [('articles/{}/temp_{}_{}.png'.format(
            self.title, self.show_ids[index] * 1000 + index,
            j), 'articles/{}/temp_{}_{}.png'.format(
                self.title, self.show_ids[index] * 1000 + index, j))
                    for j in range(4)]
        ga_show = gr.Gallery.update(visible=True, value=img_list)
        return ga_show

    def replace_image(self, article, index, evt: gr.SelectData):
        index = int(index)
        self.selected[index] = evt.index
        if '<div align="center">' in article:
            return re.sub(r'file=.*.png', 'file={}'.format(evt.value), article)
        else:
            return article + '\n' + '<div align="center"> <img src="file={}" width = 500/> </div>'.format(
                evt.value)

    def add_delete_caption(self):
        self.show_caps = False if self.show_caps else True
        text_sections = self.output_text.split('\n')
        components, _ = self.show_md(text_sections,
                                     self.title,
                                     self.caps,
                                     selected=self.selected,
                                     show_cap=self.show_caps)
        return components

    def save(self):
        folder = 'save_articles/' + self.title
        if os.path.exists(folder):
            for item in os.listdir(folder):
                os.remove(os.path.join(folder, item))
        os.makedirs(folder, exist_ok=True)

        save_text = ''
        count = 0
        if len(self.output_text) > 0:
            text_sections = self.output_text.split('\n')
            for i in range(len(text_sections)):
                if i in self.caps:
                    if self.show_caps:
                        md = text_sections[
                            i] + '\n' + '<div align="center"> <img src="temp_{}_{}.png" width = 500/> {} </div>'.format(
                                self.show_ids[i] * 1000 + i, self.selected[i],
                                self.caps[i])
                    else:
                        md = text_sections[
                            i] + '\n' + '<div align="center"> <img src="temp_{}_{}.png" width = 500/> </div>'.format(
                                self.show_ids[i] * 1000 + i, self.selected[i])
                    count += 1
                else:
                    md = text_sections[i]

                save_text += md + '\n\n'
            save_text = save_text[:-2]

        with open(os.path.join(folder, 'io.MD'), 'w') as f:
            f.writelines(save_text)

        for k in self.caps.keys():
            shutil.copy(
                os.path.join(
                    'articles', self.title,
                    f'temp_{self.show_ids[k] * 1000 + k}_{self.selected[k]}.png'
                ), folder)
        archived = shutil.make_archive(folder, 'zip', folder)
        return archived

    def get_context_emb(self, state, img_list):
        prompt = state.get_prompt()
        print(prompt)
        prompt_segs = prompt.split('<Img><ImageHere></Img>')

        assert len(prompt_segs) == len(
            img_list
        ) + 1, "Unmatched numbers of image placeholders and images."
        seg_tokens = [
            self.llm_model.internlm_tokenizer(seg,
                                              return_tensors="pt",
                                              add_special_tokens=i == 0).to(
                                                  self.device).input_ids
            for i, seg in enumerate(prompt_segs)
        ]
        seg_embs = [
            self.llm_model.internlm_model.model.embed_tokens(seg_t)
            for seg_t in seg_tokens
        ]
        mixed_embs = [
            emb for pair in zip(seg_embs[:-1], img_list) for emb in pair
        ] + [seg_embs[-1]]
        mixed_embs = torch.cat(mixed_embs, dim=1)
        return mixed_embs

    def chat_ask(self, state, img_list, text, image):
        print(1111)
        state.skip_next = False
        if len(text) <= 0 and image is None:
            state.skip_next = True
            return (state, img_list, state.to_gradio_chatbot(), "",
                    None) + (no_change_btn, ) * 2

        if image is not None:
            image_pt = self.vis_processor(image).unsqueeze(0).to(0)
            image_emb = self.llm_model.encode_img(image_pt)
            img_list.append(image_emb)

            state.append_message(state.roles[0],
                                 ["<Img><ImageHere></Img>", image])

        if len(state.messages) > 0 and state.messages[-1][0] == state.roles[
                0] and isinstance(state.messages[-1][1], list):
            #state.messages[-1][1] = ' '.join([state.messages[-1][1], text])
            state.messages[-1][1][0] = ' '.join(
                [state.messages[-1][1][0], text])
        else:
            state.append_message(state.roles[0], text)

        print(state.messages)

        state.append_message(state.roles[1], None)

        return (state, img_list, state.to_gradio_chatbot(), "",
                None) + (disable_btn, ) * 2

    def generate_with_callback(self, callback=None, **kwargs):
        kwargs.setdefault("stopping_criteria",
                          transformers.StoppingCriteriaList())
        kwargs["stopping_criteria"].append(Stream(callback_func=callback))
        with torch.no_grad():
            with self.llm_model.maybe_autocast():
                self.llm_model.internlm_model.generate(**kwargs)

    def generate_with_streaming(self, **kwargs):
        return Iteratorize(self.generate_with_callback, kwargs, callback=None)

    def chat_answer(self, state, img_list, max_output_tokens,
                    repetition_penalty, num_beams, do_sample):
        # text = '图片中是一幅油画,描绘了红军长征的场景。画面中,一群红军战士正在穿过一片草地,他们身后的旗帜在风中飘扬。'
        # for i in range(len(text)):
        #     state.messages[-1][-1] = text[:i+1] + "▌"
        #     yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 2
        # state.messages[-1][-1] = text[:i + 1]
        # yield (state, state.to_gradio_chatbot()) + (enable_btn, ) * 2
        # return

        if state.skip_next:
            return (state, state.to_gradio_chatbot()) + (no_change_btn, ) * 2

        embs = self.get_context_emb(state, img_list)
        if chat_stream_output:
            generate_params = dict(
                inputs_embeds=embs,
                num_beams=num_beams,
                do_sample=do_sample,
                stopping_criteria=self.stopping_criteria,
                repetition_penalty=float(repetition_penalty),
                max_length=max_output_tokens,
                bos_token_id=self.llm_model.internlm_tokenizer.bos_token_id,
                eos_token_id=self.llm_model.internlm_tokenizer.eos_token_id,
                pad_token_id=self.llm_model.internlm_tokenizer.pad_token_id,
            )
            state.messages[-1][-1] = "▌"
            with self.generate_with_streaming(**generate_params) as generator:
                for output in generator:
                    decoded_output = self.llm_model.internlm_tokenizer.decode(
                        output[1:])
                    if output[-1] in [
                            self.llm_model.internlm_tokenizer.eos_token_id, 333, 497
                    ]:
                        break
                    state.messages[-1][-1] = decoded_output + "▌"
                    yield (state,
                           state.to_gradio_chatbot()) + (disable_btn, ) * 2
                    time.sleep(0.03)
            state.messages[-1][-1] = state.messages[-1][-1][:-1]
            yield (state, state.to_gradio_chatbot()) + (enable_btn, ) * 2
            return
        else:
            outputs = self.llm_model.internlm_model.generate(
                inputs_embeds=embs,
                max_new_tokens=max_output_tokens,
                stopping_criteria=self.stopping_criteria,
                num_beams=num_beams,
                #temperature=float(temperature),
                do_sample=do_sample,
                repetition_penalty=float(repetition_penalty),
                bos_token_id=self.llm_model.internlm_tokenizer.bos_token_id,
                eos_token_id=self.llm_model.internlm_tokenizer.eos_token_id,
                pad_token_id=self.llm_model.internlm_tokenizer.pad_token_id,
            )

            output_token = outputs[0]
            if output_token[0] == 0:
                output_token = output_token[1:]
            output_text = self.llm_model.internlm_tokenizer.decode(
                output_token, add_special_tokens=False)
            print(output_text)
            output_text = output_text.split('<TOKENS_UNUSED_1>')[
                0]  # remove the stop sign '###'
            output_text = output_text.split('Assistant:')[-1].strip()
            output_text = output_text.replace("<s>", "")
            state.messages[-1][1] = output_text

            return (state, state.to_gradio_chatbot()) + (enable_btn, ) * 2

    def clear_answer(self, state):
        state.messages[-1][-1] = None
        return (state, state.to_gradio_chatbot())

    def chat_clear_history(self):
        state = CONV_VISION_7132_v2.copy()
        return (state, [], state.to_gradio_chatbot(), "",
                None) + (disable_btn, ) * 2


def load_demo():
    state = CONV_VISION_7132_v2.copy()

    return (state, [], gr.Chatbot.update(visible=True),
            gr.Textbox.update(visible=True), gr.Button.update(visible=True),
            gr.Row.update(visible=True), gr.Accordion.update(visible=True))


def change_language(lang):
    if lang == '中文':
        lang_btn = gr.update(value='English')
        title = gr.update(label='根据给定标题写一个图文并茂的文章:')
        btn = gr.update(value='生成')
        parameter_article = gr.update(label='高级设置')

        beam = gr.update(label='集束大小')
        repetition = gr.update(label='重复惩罚')
        text_num = gr.update(label='最多输出字数')
        msi = gr.update(label='模型选图')
        random = gr.update(label='采样')
        img_num = gr.update(label='生成文章后,可选择全文配图数量')
        adjust_btn = gr.update(value='固定数量配图')
        cap_searchs, editers = [], []
        for _ in range(max_section):
            cap_searchs.append(gr.update(value='搜索'))
            editers.append(gr.update(label='编辑'))

        save_btn = gr.update(value='文章下载')
        save_file = gr.update(label='文章下载')

        parameter_chat = gr.update(label='参数')
        chat_text_num = gr.update(label='最多输出字数')
        chat_beam = gr.update(label='集束大小')
        chat_repetition = gr.update(label='重复惩罚')
        chat_random = gr.update(label='采样')

        chat_textbox = gr.update(placeholder='输入聊天内容并回车')
        submit_btn = gr.update(value='提交')
        regenerate_btn = gr.update(value='🔄  重新生成')
        clear_btn = gr.update(value='🗑️  清空聊天框')
    elif lang == 'English':
        lang_btn = gr.update(value='中文')
        title = gr.update(
            label='Write an illustrated article based on the given title:')
        btn = gr.update(value='Submit')
        parameter_article = gr.update(label='Advanced Settings')

        beam = gr.update(label='Beam Size')
        repetition = gr.update(label='Repetition_penalty')
        text_num = gr.update(label='Max output tokens')
        msi = gr.update(label='Model selects images')
        random = gr.update(label='Do_sample')
        img_num = gr.update(
            label=
            'Select the number of the inserted image after article generation.'
        )
        adjust_btn = gr.update(value='Insert a fixed number of images')
        cap_searchs, editers = [], []
        for _ in range(max_section):
            cap_searchs.append(gr.update(value='Search'))
            editers.append(gr.update(label='edit'))

        save_btn = gr.update(value='Save article')
        save_file = gr.update(label='Save article')

        parameter_chat = gr.update(label='Parameters')
        chat_text_num = gr.update(label='Max output tokens')
        chat_beam = gr.update(label='Beam Size')
        chat_repetition = gr.update(label='Repetition_penalty')
        chat_random = gr.update(label='Do_sample')

        chat_textbox = gr.update(placeholder='Enter text and press ENTER')
        submit_btn = gr.update(value='Submit')
        regenerate_btn = gr.update(value='🔄  Regenerate')
        clear_btn = gr.update(value='🗑️  Clear history')

    return [lang_btn, title, btn, parameter_article, beam, repetition, text_num, msi, random, img_num, adjust_btn] +\
           cap_searchs + editers + [save_btn, save_file] +[parameter_chat, chat_text_num, chat_beam, chat_repetition, chat_random] + \
           [chat_textbox, submit_btn, regenerate_btn, clear_btn]


parser = argparse.ArgumentParser()
parser.add_argument("--folder", default='internlm/internlm-xcomposer-7b')
parser.add_argument("--private", default=False, action='store_true')
args = parser.parse_args()
demo_ui = Demo_UI(args.folder)

with gr.Blocks(css=custom_css, title='浦语·灵笔 (InternLM-XComposer)') as demo:
    with gr.Row():
        with gr.Column(scale=20):
            #gr.HTML("""<h1 align="center" id="space-title" style="font-size:35px;">🤗 浦语·灵笔 (InternLM-XComposer)</h1>""")
            gr.HTML(
                """<h1 align="center"><img src="https://raw.githubusercontent.com/panzhang0212/interleaved_io/main/logo.png", alt="InternLM-XComposer" border="0" style="margin: 0 auto; height: 200px;" /></a> </h1>"""
            )
        with gr.Column(scale=1, min_width=100):
            lang_btn = gr.Button("中文")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("📝 创作图文并茂文章 (Write Interleaved-text-image Article)"):
            with gr.Row():
                title = gr.Textbox(
                    label=
                    'Write an illustrated article based on the given title:',
                    scale=2)
                btn = gr.Button("Submit", scale=1)

            with gr.Row():
                img_num = gr.Slider(
                    minimum=1.0,
                    maximum=30.0,
                    value=5.0,
                    step=1.0,
                    scale=2,
                    label=
                    'Select the number of the inserted image after article generation.'
                )
                adjust_btn = gr.Button('Insert a fixed number of images',
                                       interactive=False,
                                       scale=1)

            with gr.Row():
                with gr.Column(scale=1):
                    with gr.Accordion("Advanced Settings",
                                      open=False,
                                      visible=True) as parameter_article:
                        beam = gr.Slider(minimum=1.0,
                                         maximum=6.0,
                                         value=5.0,
                                         step=1.0,
                                         label='Beam Size')
                        repetition = gr.Slider(minimum=0.0,
                                               maximum=10.0,
                                               value=5.0,
                                               step=0.1,
                                               label='Repetition_penalty')
                        text_num = gr.Slider(minimum=100.0,
                                             maximum=2000.0,
                                             value=1000.0,
                                             step=1.0,
                                             label='Max output tokens')
                        msi = gr.Checkbox(value=True,
                                          label='Model selects images')
                        random = gr.Checkbox(label='Do_sample')

                with gr.Column(scale=1):
                    gr.Examples(
                        examples=[["又见敦煌"], ["星链新闻稿"], ["如何养好一只宠物"],
                                  ["Shanghai Travel Guide in English"], ["Travel guidance of London in English"], ["Advertising for Genshin Impact in English"]],
                        inputs=[title],
                    )

            articles = []
            gallerys = []
            add_delete_btns = []
            cap_textboxs = []
            cap_searchs = []
            editers = []
            with gr.Column():
                for i in range(max_section):
                    with gr.Row():
                        visible = True if i == 0 else False
                        with gr.Column(scale=2):
                            article = gr.Markdown(visible=visible,
                                                  elem_classes='feedback')
                            articles.append(article)

                        with gr.Column(scale=1):
                            with gr.Accordion('edit',
                                              open=False,
                                              visible=False) as editer:
                                with gr.Row():
                                    cap_textbox = gr.Textbox(show_label=False,
                                                             interactive=True,
                                                             scale=6,
                                                             visible=False)
                                    cap_search = gr.Button(value="Search",
                                                           visible=False,
                                                           scale=1)
                                with gr.Row():
                                    gallery = gr.Gallery(visible=False,
                                                         columns=2,
                                                         height='auto')

                                add_delete_btn = gr.Button(visible=False)

                            gallery.select(demo_ui.replace_image, [
                                articles[i],
                                gr.Number(value=i, visible=False)
                            ], articles[i])
                            gallerys.append(gallery)
                            add_delete_btns.append(add_delete_btn)

                            cap_textboxs.append(cap_textbox)
                            cap_searchs.append(cap_search)
                            editers.append(editer)

                save_btn = gr.Button("Save article")
                save_file = gr.File(label="Save article")

                for i in range(max_section):
                    add_delete_btns[i].click(demo_ui.add_delete_image,
                                             inputs=[
                                                 articles[i],
                                                 add_delete_btns[i],
                                                 gr.Number(value=i,
                                                           visible=False)
                                             ],
                                             outputs=[
                                                 articles[i], gallerys[i],
                                                 add_delete_btns[i],
                                                 cap_textboxs[i],
                                                 cap_searchs[i]
                                             ])
                    cap_searchs[i].click(demo_ui.search_image,
                                         inputs=[
                                             cap_textboxs[i],
                                             gr.Number(value=i, visible=False)
                                         ],
                                         outputs=gallerys[i])

                btn.click(
                    demo_ui.generate_article,
                    inputs=[title, beam, repetition, text_num, msi, random],
                    outputs=articles + gallerys + add_delete_btns +
                    cap_textboxs + cap_searchs + editers + [btn, adjust_btn])
                # cap_btn.click(demo_ui.add_delete_caption, inputs=None, outputs=articles)
                save_btn.click(demo_ui.save, inputs=None, outputs=save_file)
                adjust_btn.click(demo_ui.adjust_img,
                                 inputs=img_num,
                                 outputs=articles + gallerys +
                                 add_delete_btns + cap_textboxs + cap_searchs +
                                 editers)

        with gr.TabItem("💬 多模态对话 (Multimodal Chat)", elem_id="chat", id=0):
            chat_state = gr.State()
            img_list = gr.State()
            with gr.Row():
                with gr.Column(scale=3):
                    imagebox = gr.Image(type="pil")

                    with gr.Accordion("Parameters", open=True,
                                      visible=False) as parameter_row:
                        chat_max_output_tokens = gr.Slider(
                            minimum=0,
                            maximum=1024,
                            value=512,
                            step=64,
                            interactive=True,
                            label="Max output tokens",
                        )
                        chat_num_beams = gr.Slider(
                            minimum=1,
                            maximum=5,
                            value=3,
                            step=1,
                            interactive=True,
                            label="Beam Size",
                        )
                        chat_repetition_penalty = gr.Slider(
                            minimum=1,
                            maximum=5,
                            value=1,
                            step=0.1,
                            interactive=True,
                            label="Repetition_penalty",
                        )
                        # chat_temperature = gr.Slider(minimum=0, maximum=1, value=1, step=0.1, interactive=True,
                        #                         label="Temperature", )
                        chat_do_sample = gr.Checkbox(interactive=True,
                                                     value=True,
                                                     label="Do_sample")

                with gr.Column(scale=6):
                    chatbot = grChatbot(elem_id="chatbot",
                                        visible=False,
                                        height=750)
                    with gr.Row():
                        with gr.Column(scale=8):
                            chat_textbox = gr.Textbox(
                                show_label=False,
                                placeholder="Enter text and press ENTER",
                                visible=False).style(container=False)
                        with gr.Column(scale=1, min_width=60):
                            submit_btn = gr.Button(value="Submit",
                                                   visible=False)
                    with gr.Row(visible=True) as button_row:
                        regenerate_btn = gr.Button(value="🔄  Regenerate",
                                                   interactive=False)
                        clear_btn = gr.Button(value="🗑️  Clear history",
                                              interactive=False)

            btn_list = [regenerate_btn, clear_btn]
            parameter_list = [
                chat_max_output_tokens, chat_repetition_penalty,
                chat_num_beams, chat_do_sample
            ]

            chat_textbox.submit(
                demo_ui.chat_ask,
                [chat_state, img_list, chat_textbox, imagebox],
                [chat_state, img_list, chatbot, chat_textbox, imagebox] +
                btn_list).then(demo_ui.chat_answer,
                               [chat_state, img_list] + parameter_list,
                               [chat_state, chatbot] + btn_list)
            submit_btn.click(
                demo_ui.chat_ask,
                [chat_state, img_list, chat_textbox, imagebox],
                [chat_state, img_list, chatbot, chat_textbox, imagebox] +
                btn_list).then(demo_ui.chat_answer,
                               [chat_state, img_list] + parameter_list,
                               [chat_state, chatbot] + btn_list)

            regenerate_btn.click(demo_ui.clear_answer, chat_state,
                                 [chat_state, chatbot]).then(
                                     demo_ui.chat_answer,
                                     [chat_state, img_list] + parameter_list,
                                     [chat_state, chatbot] + btn_list)
            clear_btn.click(
                demo_ui.chat_clear_history, None,
                [chat_state, img_list, chatbot, chat_textbox, imagebox] +
                btn_list)

            demo.load(load_demo, None, [
                chat_state, img_list, chatbot, chat_textbox, submit_btn,
                parameter_row
            ])

    lang_btn.click(change_language, inputs=lang_btn, outputs=[lang_btn, title, btn, parameter_article] +\
                                [beam, repetition, text_num, msi, random, img_num, adjust_btn] + cap_searchs + editers +\
                                [save_btn, save_file] + [parameter_row, chat_max_output_tokens, chat_num_beams, chat_repetition_penalty, chat_do_sample] +\
                                [chat_textbox, submit_btn, regenerate_btn, clear_btn])
    demo.queue(concurrency_count=8, status_update_rate=10, api_open=False)

if __name__ == "__main__":
    demo.launch()