import streamlit as st from transformers import pipeline # txt2Story def text_summarize(text): pipe = pipeline("summarization", model="human-centered-summarization/financial-summarization-pegasus") summary = pipe(text)[0]['summary_text'] print(summary) return summary # Story2Audio def sentiment(story_text): pipe = pipeline("text-classification", model="WillWEI0103/CustomModel_finance_sentiment_analytics") label = pipe(story_text)[0]['label'] return label def main(): st.set_page_config(page_title="Your Finance news", page_icon="📰") st.header("Summarize Your Finance News and Analyze Sentiment") text=st.text_input('Input your Finance news: ') #Stage 1: Text Summarization st.text('Processing Finance News Summarization...') summary = text_summarize(text) st.write(summary) #Stage 2: Sentiment Analytics st.text('Processing Sentiment Analytics...') label = sentiment(summary) st.text('The sentiment of finance news is: ') st.write(label) if __name__ == "__main__": main()