Delete app.py
Browse files
app.py
DELETED
@@ -1,38 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from transformers import pipeline
|
3 |
-
import time
|
4 |
-
|
5 |
-
def sentiment(summary):
|
6 |
-
pipe = pipeline("text-classification", model="WillWEI0103/CustomModel_finance_sentiment_analytics")
|
7 |
-
label = pipe(summary)[0]['label']
|
8 |
-
score = pipe(summary)[0]['score']
|
9 |
-
return label,score
|
10 |
-
|
11 |
-
|
12 |
-
def main():
|
13 |
-
dicts={"bullish":'Positive📈',"bearish":'Negative📉','neutral':"Neutral😐"}
|
14 |
-
st.header("Summarize Your Finance News and Analyze Sentiment📰")
|
15 |
-
text=st.text_input('Input your Finance news(Max lenth<=3000): ',None,max_chars=3000)
|
16 |
-
#if text is not None:
|
17 |
-
if st.button('Conduct'):
|
18 |
-
st.text_area('Your Finance News: ',text,height=100)
|
19 |
-
|
20 |
-
#Stage 1: Text Summarization
|
21 |
-
with st.status("Processing Finance News Summarization...") as status:
|
22 |
-
text_summarize=pipeline("summarization", model="nickmuchi/fb-bart-large-finetuned-trade-the-event-finance-summarizer")
|
23 |
-
summary=text_summarize(text)[0]['summary_text']
|
24 |
-
status.update(label="Summarization Completed", state="complete", expanded=False)
|
25 |
-
st.text_area('Your Finance News Summary',summary,height=30)
|
26 |
-
|
27 |
-
#Stage 2: Sentiment Analytics
|
28 |
-
with st.status("Processing Sentiment Analytics..") as status:
|
29 |
-
label,score = sentiment(summary)
|
30 |
-
label=dicts[label]
|
31 |
-
status.update(label="Sentiment Analytics Completed", state="complete", expanded=False)
|
32 |
-
st.text('The Sentiment of the Finance News is: ')
|
33 |
-
st.text(label)
|
34 |
-
st.text('The Sentiment Score: ')
|
35 |
-
st.text(round(score,3))
|
36 |
-
|
37 |
-
if __name__ == "__main__":
|
38 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|