Delete app.py
Browse files
app.py
DELETED
@@ -1,36 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from transformers import pipeline
|
3 |
-
|
4 |
-
#def text_summarize(text):
|
5 |
-
# pipe = pipeline("summarization", model="human-centered-summarization/financial-summarization-pegasus")
|
6 |
-
# summary = pipe(text)[0]['summary_text']
|
7 |
-
# print(summary)
|
8 |
-
# return summary
|
9 |
-
|
10 |
-
def sentiment(summary):
|
11 |
-
pipe = pipeline("text-classification", model="WillWEI0103/CustomModel_finance_sentiment_analytics")
|
12 |
-
label = pipe(summary)[0]['label']
|
13 |
-
return label
|
14 |
-
|
15 |
-
|
16 |
-
def main():
|
17 |
-
st.set_page_config(page_title="Your Finance news", page_icon="📰")
|
18 |
-
st.header("Summarize Your Finance News and Analyze Sentiment")
|
19 |
-
text=st.text_input('Input your Finance news: ')
|
20 |
-
|
21 |
-
#Stage 1: Text Summarization
|
22 |
-
text_summarize=pipeline("summarization", model="nickmuchi/fb-bart-large-finetuned-trade-the-event-finance-summarizer")
|
23 |
-
#text_summarize=pipeline("summarization", model="human-centered-summarization/financial-summarization-pegasus")
|
24 |
-
summary = text_summarize(text)
|
25 |
-
summary = summary[0]['summary_text']
|
26 |
-
st.text('Processing Finance News Summarization...')
|
27 |
-
st.write(summary)
|
28 |
-
|
29 |
-
#Stage 2: Sentiment Analytics
|
30 |
-
st.text('Processing Sentiment Analytics...')
|
31 |
-
label = sentiment(summary)
|
32 |
-
st.text('The sentiment of finance news is: ')
|
33 |
-
st.write(label)
|
34 |
-
|
35 |
-
if __name__ == "__main__":
|
36 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|