WillWEI0103's picture
Create app.py
dc970a3 verified
raw
history blame
1.5 kB
import streamlit as st
from transformers import pipeline
import time
def sentiment(summary):
pipe = pipeline("text-classification", model="WillWEI0103/CustomModel_finance_sentiment_analytics")
label = pipe(summary)[0]['label']
return label
def main():
dicts={"bullish":'Positive📈',"bearish":'Negative📉','neutral':"Neutral😐"}
st.header("Summarize Your Finance News and Analyze Sentiment📰")
text=st.text_input('Input your Finance news(Max lenth<=3000): ',None,max_chars=3000)
if text is not None:
st.text('Your Finance news: ')
st.write(text)
st.slider(min_value=0, max_value=100,value=[0,100])
st.divider() # Draws a horizontal rule
#Stage 1: Text Summarization
st.text('Processing Finance News Summarization...')
text_summarize=pipeline("summarization", model="nickmuchi/fb-bart-large-finetuned-trade-the-event-finance-summarizer")
summary=text_summarize(text)[0]['summary_text']
st.write(summary)
st.slider(min_value=0, max_value=100,value=[0,100])
st.divider() # Draws a horizontal rule
#Stage 2: Sentiment Analytics
st.text('Processing Sentiment Analytics...')
label = sentiment(summary)
label=dicts[label]
st.slider(min_value=0, max_value=100,value=[0,100])
st.divider() # Draws a horizontal rule
st.text('The sentiment of finance news is: ')
st.write(label)
if __name__ == "__main__":
main()