File size: 1,071 Bytes
9b59b66 c31d7ca 9b59b66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import streamlit as st
from transformers import pipeline
# txt2Story
def text_summarize(text):
pipe = pipeline("summarization", model="human-centered-summarization/financial-summarization-pegasus")
summary = pipe(text)[0]['summary_text']
print(summary)
return summary
# Story2Audio
def sentiment(story_text):
pipe = pipeline("text-classification", model="WillWEI0103/CustomModel_finance_sentiment_analytics")
label = pipe(story_text)[0]['label']
return label
def main():
st.set_page_config(page_title="Your Finance news", page_icon="📰")
st.header("Summarize Your Finance News and Analyze Sentiment")
text=st.text_input('Input your Finance news: ')
#Stage 1: Text Summarization
st.text('Processing Finance News Summarization...')
summary = text_summarize(text)
st.write(summary)
#Stage 2: Sentiment Analytics
st.text('Processing Sentiment Analytics...')
label = sentiment(summary)
st.text('The sentiment of finance news is: ')
st.write(label)
if __name__ == "__main__":
main() |