Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
# app.py
|
2 |
import streamlit as st
|
3 |
from transformers import pipeline, TFAutoModelForSequenceClassification, AutoTokenizer
|
4 |
from datasets import load_dataset
|
@@ -7,7 +6,7 @@ import pandas as pd
|
|
7 |
st.set_page_config(layout="wide")
|
8 |
|
9 |
# Load dataset
|
10 |
-
@st.
|
11 |
def load_data():
|
12 |
dataset = load_dataset("WhiteAngelss/Turkce-Duygu-Analizi-Dataset")
|
13 |
return dataset
|
@@ -40,13 +39,13 @@ elif input_method == "Write or Paste New Text":
|
|
40 |
st.subheader("Text to Analyze")
|
41 |
input_text = st.text_area('Write or Paste Text Below', value="", height=128, max_chars=None)
|
42 |
|
43 |
-
@st.
|
44 |
def setModel(model_checkpoint):
|
45 |
model = TFAutoModelForSequenceClassification.from_pretrained(model_checkpoint)
|
46 |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
47 |
return pipeline('sentiment-analysis', model=model, tokenizer=tokenizer)
|
48 |
|
49 |
-
Run_Button = st.button("Run"
|
50 |
|
51 |
if Run_Button and input_text:
|
52 |
sentiment_pipeline = setModel(model_checkpoint)
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline, TFAutoModelForSequenceClassification, AutoTokenizer
|
3 |
from datasets import load_dataset
|
|
|
6 |
st.set_page_config(layout="wide")
|
7 |
|
8 |
# Load dataset
|
9 |
+
@st.cache
|
10 |
def load_data():
|
11 |
dataset = load_dataset("WhiteAngelss/Turkce-Duygu-Analizi-Dataset")
|
12 |
return dataset
|
|
|
39 |
st.subheader("Text to Analyze")
|
40 |
input_text = st.text_area('Write or Paste Text Below', value="", height=128, max_chars=None)
|
41 |
|
42 |
+
@st.cache
|
43 |
def setModel(model_checkpoint):
|
44 |
model = TFAutoModelForSequenceClassification.from_pretrained(model_checkpoint)
|
45 |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
46 |
return pipeline('sentiment-analysis', model=model, tokenizer=tokenizer)
|
47 |
|
48 |
+
Run_Button = st.button("Run")
|
49 |
|
50 |
if Run_Button and input_text:
|
51 |
sentiment_pipeline = setModel(model_checkpoint)
|