Spaces:
Configuration error
Configuration error
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= | |
from __future__ import annotations | |
import inspect | |
import json | |
from typing import Callable, Type, Union | |
from pydantic import BaseModel, create_model | |
def get_pydantic_model( | |
input_data: Union[str, Type[BaseModel], Callable], | |
) -> Type[BaseModel]: | |
r"""A multi-purpose function that can be used as a normal function, | |
a class decorator, or a function decorator. | |
Args: | |
input_data (Union[str, type, Callable]): | |
- If a string is provided, it should be a JSON-encoded string | |
that will be converted into a BaseModel. | |
- If a function is provided, it will be decorated such that | |
its arguments are converted into a BaseModel. | |
- If a BaseModel class is provided, it will be returned directly. | |
Returns: | |
Type[BaseModel]: The BaseModel class that will be used to | |
structure the input data. | |
""" | |
if isinstance(input_data, str): | |
data_dict = json.loads(input_data) | |
TemporaryModel = create_model( # type: ignore[call-overload] | |
"TemporaryModel", | |
**{key: (type(value), None) for key, value in data_dict.items()}, | |
) | |
return TemporaryModel(**data_dict).__class__ | |
elif callable(input_data): | |
WrapperClass = create_model( # type: ignore[call-overload] | |
f"{input_data.__name__.capitalize()}Model", | |
**{ | |
name: (param.annotation, ...) | |
for name, param in inspect.signature( | |
input_data | |
).parameters.items() | |
}, | |
) | |
return WrapperClass | |
if issubclass(input_data, BaseModel): | |
return input_data | |
raise ValueError("Invalid input data provided.") | |