Spaces:
Configuration error
Configuration error
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= | |
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union | |
from camel.configs import REKA_API_PARAMS, RekaConfig | |
from camel.messages import OpenAIMessage | |
from camel.models import BaseModelBackend | |
from camel.types import ChatCompletion, ModelType | |
from camel.utils import ( | |
BaseTokenCounter, | |
OpenAITokenCounter, | |
api_keys_required, | |
dependencies_required, | |
) | |
if TYPE_CHECKING: | |
from reka.types import ChatMessage, ChatResponse | |
try: | |
import os | |
if os.getenv("AGENTOPS_API_KEY") is not None: | |
from agentops import LLMEvent, record | |
else: | |
raise ImportError | |
except (ImportError, AttributeError): | |
LLMEvent = None | |
class RekaModel(BaseModelBackend): | |
r"""Reka API in a unified BaseModelBackend interface. | |
Args: | |
model_type (Union[ModelType, str]): Model for which a backend is | |
created, one of REKA_* series. | |
model_config_dict (Optional[Dict[str, Any]], optional): A dictionary | |
that will be fed into:obj:`Reka.chat.create()`. If :obj:`None`, | |
:obj:`RekaConfig().as_dict()` will be used. (default: :obj:`None`) | |
api_key (Optional[str], optional): The API key for authenticating with | |
the Reka service. (default: :obj:`None`) | |
url (Optional[str], optional): The url to the Reka service. | |
(default: :obj:`None`) | |
token_counter (Optional[BaseTokenCounter], optional): Token counter to | |
use for the model. If not provided, :obj:`OpenAITokenCounter` will | |
be used. (default: :obj:`None`) | |
""" | |
def __init__( | |
self, | |
model_type: Union[ModelType, str], | |
model_config_dict: Optional[Dict[str, Any]] = None, | |
api_key: Optional[str] = None, | |
url: Optional[str] = None, | |
token_counter: Optional[BaseTokenCounter] = None, | |
) -> None: | |
from reka.client import Reka | |
if model_config_dict is None: | |
model_config_dict = RekaConfig().as_dict() | |
api_key = api_key or os.environ.get("REKA_API_KEY") | |
url = url or os.environ.get("REKA_API_BASE_URL") | |
super().__init__( | |
model_type, model_config_dict, api_key, url, token_counter | |
) | |
self._client = Reka(api_key=self._api_key, base_url=self._url) | |
def _convert_reka_to_openai_response( | |
self, response: 'ChatResponse' | |
) -> ChatCompletion: | |
r"""Converts a Reka `ChatResponse` to an OpenAI-style `ChatCompletion` | |
response. | |
Args: | |
response (ChatResponse): The response object from the Reka API. | |
Returns: | |
ChatCompletion: An OpenAI-compatible chat completion response. | |
""" | |
openai_response = ChatCompletion.construct( | |
id=response.id, | |
choices=[ | |
dict( | |
message={ | |
"role": response.responses[0].message.role, | |
"content": response.responses[0].message.content, | |
}, | |
finish_reason=response.responses[0].finish_reason | |
if response.responses[0].finish_reason | |
else None, | |
) | |
], | |
created=None, | |
model=response.model, | |
object="chat.completion", | |
usage=response.usage, | |
) | |
return openai_response | |
def _convert_openai_to_reka_messages( | |
self, | |
messages: List[OpenAIMessage], | |
) -> List["ChatMessage"]: | |
r"""Converts OpenAI API messages to Reka API messages. | |
Args: | |
messages (List[OpenAIMessage]): A list of messages in OpenAI | |
format. | |
Returns: | |
List[ChatMessage]: A list of messages converted to Reka's format. | |
""" | |
from reka.types import ChatMessage | |
reka_messages = [] | |
for msg in messages: | |
role = msg.get("role") | |
content = str(msg.get("content")) | |
if role == "user": | |
reka_messages.append(ChatMessage(role="user", content=content)) | |
elif role == "assistant": | |
reka_messages.append( | |
ChatMessage(role="assistant", content=content) | |
) | |
elif role == "system": | |
reka_messages.append(ChatMessage(role="user", content=content)) | |
# Add one more assistant msg since Reka requires conversation | |
# history must alternate between 'user' and 'assistant', | |
# starting and ending with 'user'. | |
reka_messages.append( | |
ChatMessage( | |
role="assistant", | |
content="", | |
) | |
) | |
else: | |
raise ValueError(f"Unsupported message role: {role}") | |
return reka_messages | |
def token_counter(self) -> BaseTokenCounter: | |
r"""Initialize the token counter for the model backend. | |
# NOTE: Temporarily using `OpenAITokenCounter` | |
Returns: | |
BaseTokenCounter: The token counter following the model's | |
tokenization style. | |
""" | |
if not self._token_counter: | |
self._token_counter = OpenAITokenCounter( | |
model=ModelType.GPT_4O_MINI | |
) | |
return self._token_counter | |
def run( | |
self, | |
messages: List[OpenAIMessage], | |
) -> ChatCompletion: | |
r"""Runs inference of Mistral chat completion. | |
Args: | |
messages (List[OpenAIMessage]): Message list with the chat history | |
in OpenAI API format. | |
Returns: | |
ChatCompletion. | |
""" | |
reka_messages = self._convert_openai_to_reka_messages(messages) | |
response = self._client.chat.create( | |
messages=reka_messages, | |
model=self.model_type, | |
**self.model_config_dict, | |
) | |
openai_response = self._convert_reka_to_openai_response(response) | |
# Add AgentOps LLM Event tracking | |
if LLMEvent: | |
llm_event = LLMEvent( | |
thread_id=openai_response.id, | |
prompt=" ".join( | |
[message.get("content") for message in messages] # type: ignore[misc] | |
), | |
prompt_tokens=openai_response.usage.input_tokens, # type: ignore[union-attr] | |
completion=openai_response.choices[0].message.content, | |
completion_tokens=openai_response.usage.output_tokens, # type: ignore[union-attr] | |
model=self.model_type, | |
) | |
record(llm_event) | |
return openai_response | |
def check_model_config(self): | |
r"""Check whether the model configuration contains any | |
unexpected arguments to Reka API. | |
Raises: | |
ValueError: If the model configuration dictionary contains any | |
unexpected arguments to Reka API. | |
""" | |
for param in self.model_config_dict: | |
if param not in REKA_API_PARAMS: | |
raise ValueError( | |
f"Unexpected argument `{param}` is " | |
"input into Reka model backend." | |
) | |
def stream(self) -> bool: | |
r"""Returns whether the model is in stream mode, which sends partial | |
results each time. | |
Returns: | |
bool: Whether the model is in stream mode. | |
""" | |
return self.model_config_dict.get('stream', False) | |