Spaces:
Configuration error
Configuration error
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= | |
import ast | |
import json | |
import logging | |
import os | |
import uuid | |
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union | |
if TYPE_CHECKING: | |
from cohere.types import ChatMessageV2, ChatResponse | |
from camel.configs import COHERE_API_PARAMS, CohereConfig | |
from camel.messages import OpenAIMessage | |
from camel.models import BaseModelBackend | |
from camel.types import ChatCompletion, ModelType | |
from camel.utils import ( | |
BaseTokenCounter, | |
OpenAITokenCounter, | |
api_keys_required, | |
) | |
try: | |
if os.getenv("AGENTOPS_API_KEY") is not None: | |
from agentops import LLMEvent, record | |
else: | |
raise ImportError | |
except (ImportError, AttributeError): | |
LLMEvent = None | |
class CohereModel(BaseModelBackend): | |
r"""Cohere API in a unified BaseModelBackend interface.""" | |
def __init__( | |
self, | |
model_type: Union[ModelType, str], | |
model_config_dict: Optional[Dict[str, Any]] = None, | |
api_key: Optional[str] = None, | |
url: Optional[str] = None, | |
token_counter: Optional[BaseTokenCounter] = None, | |
): | |
import cohere | |
if model_config_dict is None: | |
model_config_dict = CohereConfig().as_dict() | |
api_key = api_key or os.environ.get("COHERE_API_KEY") | |
url = url or os.environ.get("COHERE_API_BASE_URL") | |
super().__init__( | |
model_type, model_config_dict, api_key, url, token_counter | |
) | |
self._client = cohere.ClientV2(api_key=self._api_key) | |
def _to_openai_response(self, response: 'ChatResponse') -> ChatCompletion: | |
if response.usage and response.usage.tokens: | |
input_tokens = response.usage.tokens.input_tokens or 0 | |
output_tokens = response.usage.tokens.output_tokens or 0 | |
usage = { | |
"prompt_tokens": input_tokens, | |
"completion_tokens": output_tokens, | |
"total_tokens": input_tokens + output_tokens, | |
} | |
else: | |
usage = {} | |
tool_calls = response.message.tool_calls | |
choices = [] | |
if tool_calls: | |
for tool_call in tool_calls: | |
openai_tool_calls = [ | |
dict( | |
id=tool_call.id, | |
function={ | |
"name": tool_call.function.name, | |
"arguments": tool_call.function.arguments, | |
} | |
if tool_call.function | |
else {}, | |
type=tool_call.type, | |
) | |
] | |
choice = dict( | |
index=None, | |
message={ | |
"role": "assistant", | |
"content": response.message.tool_plan, | |
"tool_calls": openai_tool_calls, | |
}, | |
finish_reason=response.finish_reason | |
if response.finish_reason | |
else None, | |
) | |
choices.append(choice) | |
else: | |
openai_tool_calls = None | |
choice = dict( | |
index=None, | |
message={ | |
"role": "assistant", | |
"content": response.message.content[0].text, # type: ignore[union-attr,index] | |
"tool_calls": openai_tool_calls, | |
}, | |
finish_reason=response.finish_reason | |
if response.finish_reason | |
else None, | |
) | |
choices.append(choice) | |
obj = ChatCompletion.construct( | |
id=response.id, | |
choices=choices, | |
created=None, | |
model=self.model_type, | |
object="chat.completion", | |
usage=usage, | |
) | |
return obj | |
def _to_cohere_chatmessage( | |
self, messages: List[OpenAIMessage] | |
) -> List["ChatMessageV2"]: | |
from cohere.types import ToolCallV2Function | |
from cohere.types.chat_message_v2 import ( | |
AssistantChatMessageV2, | |
SystemChatMessageV2, | |
ToolCallV2, | |
ToolChatMessageV2, | |
UserChatMessageV2, | |
) | |
tool_call_id = None | |
new_messages = [] | |
for msg in messages: | |
role = msg.get("role") | |
content = msg.get("content") | |
function_call = msg.get("function_call") | |
if role == "user": | |
new_message = UserChatMessageV2(role="user", content=content) # type: ignore[arg-type] | |
elif role in {"tool", "function"}: | |
new_message = ToolChatMessageV2( | |
role="tool", | |
tool_call_id=tool_call_id, # type: ignore[arg-type] | |
content=content, # type: ignore[assignment,arg-type] | |
) | |
elif role == "assistant": | |
if not function_call: | |
new_message = AssistantChatMessageV2( # type: ignore[assignment] | |
role="assistant", | |
content=content, # type: ignore[arg-type] | |
) | |
else: | |
arguments = function_call.get("arguments") # type: ignore[attr-defined] | |
arguments_dict = ast.literal_eval(arguments) | |
arguments_json = json.dumps(arguments_dict) | |
assis_tool_call_id = str(uuid.uuid4()) | |
tool_call_id = assis_tool_call_id | |
new_message = AssistantChatMessageV2( # type: ignore[assignment] | |
role="assistant", | |
tool_calls=[ | |
ToolCallV2( | |
id=assis_tool_call_id, | |
type="function", | |
function=ToolCallV2Function( | |
name=function_call.get("name"), # type: ignore[attr-defined] | |
arguments=arguments_json, # type: ignore[attr-defined] | |
), | |
) | |
], | |
content=content, # type: ignore[arg-type] | |
) | |
elif role == "system": | |
new_message = SystemChatMessageV2( # type: ignore[assignment] | |
role="system", | |
content=content, # type: ignore[arg-type] | |
) | |
else: | |
raise ValueError(f"Unsupported message role: {role}") | |
new_messages.append(new_message) | |
return new_messages # type: ignore[return-value] | |
def token_counter(self) -> BaseTokenCounter: | |
r"""Initialize the token counter for the model backend. | |
Returns: | |
BaseTokenCounter: The token counter following the model's | |
tokenization style. | |
""" | |
if not self._token_counter: | |
self._token_counter = OpenAITokenCounter( | |
model=ModelType.GPT_4O_MINI | |
) | |
return self._token_counter | |
def run(self, messages: List[OpenAIMessage]) -> ChatCompletion: | |
r"""Runs inference of Cohere chat completion. | |
Args: | |
messages (List[OpenAIMessage]): Message list with the chat history | |
in OpenAI API format. | |
Returns: | |
ChatCompletion. | |
""" | |
from cohere.core.api_error import ApiError | |
cohere_messages = self._to_cohere_chatmessage(messages) | |
try: | |
response = self._client.chat( | |
messages=cohere_messages, | |
model=self.model_type, | |
**self.model_config_dict, | |
) | |
except ApiError as e: | |
logging.error(f"Cohere API Error: {e.status_code}") | |
logging.error(f"Error body: {e.body}") | |
raise | |
except Exception as e: | |
logging.error(f"Unexpected error when calling Cohere API: {e!s}") | |
raise | |
openai_response = self._to_openai_response(response) | |
# Add AgentOps LLM Event tracking | |
if LLMEvent: | |
llm_event = LLMEvent( | |
thread_id=openai_response.id, | |
prompt=" ".join( | |
[message.get("content") for message in messages] # type: ignore[misc] | |
), | |
prompt_tokens=openai_response.usage.prompt_tokens, # type: ignore[union-attr] | |
completion=openai_response.choices[0].message.content, | |
completion_tokens=openai_response.usage.completion_tokens, # type: ignore[union-attr] | |
model=self.model_type, | |
) | |
record(llm_event) | |
return openai_response | |
def check_model_config(self): | |
r"""Check whether the model configuration contains any unexpected | |
arguments to Cohere API. | |
Raises: | |
ValueError: If the model configuration dictionary contains any | |
unexpected arguments to Cohere API. | |
""" | |
for param in self.model_config_dict: | |
if param not in COHERE_API_PARAMS: | |
raise ValueError( | |
f"Unexpected argument `{param}` is " | |
"input into Cohere model backend." | |
) | |
def stream(self) -> bool: | |
r"""Returns whether the model is in stream mode, which sends partial | |
results each time. Current it's not supported. | |
Returns: | |
bool: Whether the model is in stream mode. | |
""" | |
return False | |