Spaces:
Configuration error
Configuration error
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= | |
from __future__ import annotations | |
import os | |
from typing import Any, Optional | |
from openai import OpenAI | |
from camel.embeddings.base import BaseEmbedding | |
from camel.utils import api_keys_required | |
class OpenAICompatibleEmbedding(BaseEmbedding[str]): | |
r"""Provides text embedding functionalities supporting OpenAI | |
compatibility. | |
Args: | |
model_type (str): The model type to be used for text embeddings. | |
api_key (str): The API key for authenticating with the model service. | |
url (str): The url to the model service. | |
""" | |
def __init__( | |
self, | |
model_type: str, | |
api_key: Optional[str] = None, | |
url: Optional[str] = None, | |
) -> None: | |
self.model_type = model_type | |
self.output_dim: Optional[int] = None | |
self._api_key = api_key or os.environ.get( | |
"OPENAI_COMPATIBILIY_API_KEY" | |
) | |
self._url = url or os.environ.get("OPENAI_COMPATIBILIY_API_BASE_URL") | |
self._client = OpenAI( | |
timeout=60, | |
max_retries=3, | |
api_key=self._api_key, | |
base_url=self._url, | |
) | |
def embed_list( | |
self, | |
objs: list[str], | |
**kwargs: Any, | |
) -> list[list[float]]: | |
r"""Generates embeddings for the given texts. | |
Args: | |
objs (list[str]): The texts for which to generate the embeddings. | |
**kwargs (Any): Extra kwargs passed to the embedding API. | |
Returns: | |
list[list[float]]: A list that represents the generated embedding | |
as a list of floating-point numbers. | |
""" | |
response = self._client.embeddings.create( | |
input=objs, | |
model=self.model_type, | |
**kwargs, | |
) | |
self.output_dim = len(response.data[0].embedding) | |
return [data.embedding for data in response.data] | |
def get_output_dim(self) -> int: | |
r"""Returns the output dimension of the embeddings. | |
Returns: | |
int: The dimensionality of the embedding for the current model. | |
""" | |
if self.output_dim is None: | |
raise ValueError( | |
"Output dimension is not yet determined. Call " | |
"'embed_list' first." | |
) | |
return self.output_dim | |