Spaces:
Configuration error
Configuration error
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= | |
from __future__ import annotations | |
import os | |
from typing import Any | |
from camel.embeddings.base import BaseEmbedding | |
from camel.types import EmbeddingModelType | |
from camel.utils import api_keys_required | |
class MistralEmbedding(BaseEmbedding[str]): | |
r"""Provides text embedding functionalities using Mistral's models. | |
Args: | |
model_type (EmbeddingModelType, optional): The model type to be | |
used for text embeddings. | |
(default: :obj:`MISTRAL_EMBED`) | |
api_key (str, optional): The API key for authenticating with the | |
Mistral service. (default: :obj:`None`) | |
dimensions (int, optional): The text embedding output dimensions. | |
(default: :obj:`None`) | |
Raises: | |
RuntimeError: If an unsupported model type is specified. | |
""" | |
def __init__( | |
self, | |
model_type: EmbeddingModelType = (EmbeddingModelType.MISTRAL_EMBED), | |
api_key: str | None = None, | |
dimensions: int | None = None, | |
) -> None: | |
from mistralai import Mistral | |
if not model_type.is_mistral: | |
raise ValueError("Invalid Mistral embedding model type.") | |
self.model_type = model_type | |
if dimensions is None: | |
self.output_dim = model_type.output_dim | |
else: | |
assert isinstance(dimensions, int) | |
self.output_dim = dimensions | |
self._api_key = api_key or os.environ.get("MISTRAL_API_KEY") | |
self._client = Mistral(api_key=self._api_key) | |
def embed_list( | |
self, | |
objs: list[str], | |
**kwargs: Any, | |
) -> list[list[float]]: | |
r"""Generates embeddings for the given texts. | |
Args: | |
objs (list[str]): The texts for which to generate the embeddings. | |
**kwargs (Any): Extra kwargs passed to the embedding API. | |
Returns: | |
list[list[float]]: A list that represents the generated embedding | |
as a list of floating-point numbers. | |
""" | |
# TODO: count tokens | |
response = self._client.embeddings.create( | |
inputs=objs, | |
model=self.model_type.value, | |
**kwargs, | |
) | |
return [data.embedding for data in response.data] # type: ignore[misc,union-attr] | |
def get_output_dim(self) -> int: | |
r"""Returns the output dimension of the embeddings. | |
Returns: | |
int: The dimensionality of the embedding for the current model. | |
""" | |
return self.output_dim | |