go back to old temp
Browse files
app.py
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
import os
|
|
|
|
|
2 |
import requests
|
3 |
import pandas as pd
|
4 |
from bs4 import BeautifulSoup
|
@@ -15,6 +17,7 @@ HF_TOKEN = os.getenv('HF_TOKEN')
|
|
15 |
|
16 |
|
17 |
headers_models = ["🔢 Serial Number", "👤 Author Name", "📥 Total Downloads", "👍 Total Likes", "🤖 Number of Models",
|
|
|
18 |
"📊 Average Downloads per Model", "📈 Average Likes per Model", "🚀 Most Downloaded Model",
|
19 |
"📈 Most Download Count", "❤️ Most Liked Model", "👍 Most Like Count", "🔥 Trending Model",
|
20 |
"👑 Best Rank at Trending Models", "🏷️ Type"]
|
@@ -70,7 +73,15 @@ def get_sum(df_for_sum_function):
|
|
70 |
return {"Downloads": sum_downloads, "Likes": sum_likes}
|
71 |
|
72 |
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
|
76 |
def get_ranking(model_list, target_org):
|
@@ -121,6 +132,7 @@ def group_models_by_author(all_things):
|
|
121 |
|
122 |
def make_leaderboard(orgs, users, which_one, data):
|
123 |
data_rows = []
|
|
|
124 |
|
125 |
trend = get_trending_list(1, which_one)
|
126 |
hepsi = [orgs, users]
|
@@ -139,12 +151,15 @@ def make_leaderboard(orgs, users, which_one, data):
|
|
139 |
most_info = get_most(df)
|
140 |
|
141 |
if which_one == "models":
|
142 |
-
|
|
|
143 |
data_rows.append({
|
144 |
"Author Name": org,
|
145 |
"Total Downloads": sum_info["Downloads"],
|
146 |
"Total Likes": sum_info["Likes"],
|
147 |
"Number of Models": num_things,
|
|
|
|
|
148 |
"Average Downloads per Model": int(sum_info["Downloads"] / num_things) if num_things != 0 else 0,
|
149 |
"Average Likes per Model": int(sum_info["Likes"] / num_things) if num_things != 0 else 0,
|
150 |
"Most Downloaded Model": most_info["Most Download"]["id"],
|
@@ -188,7 +203,6 @@ def make_leaderboard(orgs, users, which_one, data):
|
|
188 |
})
|
189 |
|
190 |
leaderboard = pd.DataFrame(data_rows)
|
191 |
-
print(leaderboard.head())
|
192 |
temp = ["Total Downloads"] if which_one != "spaces" else ["Total Likes"]
|
193 |
|
194 |
leaderboard = leaderboard.sort_values(by=temp, ascending=False)
|
@@ -278,6 +292,8 @@ INTRODUCTION_TEXT = f"""
|
|
278 |
|
279 |
🛠️ The leaderboard's backend mainly runs on the [Hugging Face Hub API](https://huggingface.co/docs/huggingface_hub/v0.5.1/en/package_reference/hf_api).
|
280 |
|
|
|
|
|
281 |
📒 **Note:** In trending models/datasets/spaces, first 300 models/datasets/spaces is being retrieved from huggingface.
|
282 |
|
283 |
## 🔍 Searching Organizations and Users
|
@@ -523,13 +539,13 @@ with gr.Blocks() as demo:
|
|
523 |
search_bar_in_df = gr.Textbox(placeholder="🔍 Search for a author", show_label=False)
|
524 |
|
525 |
with gr.TabItem("🏛️ Models", id=1):
|
526 |
-
columns_to_convert = ["Author Name", "Most Downloaded Model",
|
527 |
"Most Liked Model", "Trending Model"]
|
528 |
models_df = make_leaderboard(org_names_in_list, user_names_in_list, "models", group_models_by_author(all_models))
|
529 |
models_df = models_df_to_clickable(models_df, columns_to_convert, "models")
|
530 |
|
531 |
gr_models = gr.Dataframe(apply_headers(models_df, headers_models).head(400), headers=headers_models, interactive=True,
|
532 |
-
datatype=["str", "markdown", "str", "str", "str", "str", "str",
|
533 |
"markdown", "str", "markdown", "str", "markdown", "str", "str"])
|
534 |
|
535 |
with gr.TabItem("📊 Datasets", id=2):
|
@@ -591,4 +607,3 @@ filtered_spaces_users = update_table_spaces(orgs=False, users=True, return_all=T
|
|
591 |
filtered_spaces_orgs = update_table_spaces(orgs=True, users=False, return_all=True)['👤 Author Name'].tolist()
|
592 |
|
593 |
demo.launch(debug=True)
|
594 |
-
|
|
|
1 |
import os
|
2 |
+
os.system("wget https://raw.githubusercontent.com/Weyaxi/scrape-open-llm-leaderboard/main/openllm.py")
|
3 |
+
from openllm import *
|
4 |
import requests
|
5 |
import pandas as pd
|
6 |
from bs4 import BeautifulSoup
|
|
|
17 |
|
18 |
|
19 |
headers_models = ["🔢 Serial Number", "👤 Author Name", "📥 Total Downloads", "👍 Total Likes", "🤖 Number of Models",
|
20 |
+
"🏆 Best Model On Open LLM Leaderboard", "🥇 Best Rank On Open LLM Leaderboard",
|
21 |
"📊 Average Downloads per Model", "📈 Average Likes per Model", "🚀 Most Downloaded Model",
|
22 |
"📈 Most Download Count", "❤️ Most Liked Model", "👍 Most Like Count", "🔥 Trending Model",
|
23 |
"👑 Best Rank at Trending Models", "🏷️ Type"]
|
|
|
73 |
return {"Downloads": sum_downloads, "Likes": sum_likes}
|
74 |
|
75 |
|
76 |
+
def get_openllm_leaderboard():
|
77 |
+
try:
|
78 |
+
data = get_json_format_data()
|
79 |
+
finished_models = get_datas(data)
|
80 |
+
df = pd.DataFrame(finished_models)
|
81 |
+
return df['Model'].tolist()
|
82 |
+
except Exception as e: # something is wrong about the leaderboard so return empty list
|
83 |
+
print(e)
|
84 |
+
return []
|
85 |
|
86 |
|
87 |
def get_ranking(model_list, target_org):
|
|
|
132 |
|
133 |
def make_leaderboard(orgs, users, which_one, data):
|
134 |
data_rows = []
|
135 |
+
open_llm_leaderboard = get_openllm_leaderboard() if which_one == "models" else None
|
136 |
|
137 |
trend = get_trending_list(1, which_one)
|
138 |
hepsi = [orgs, users]
|
|
|
151 |
most_info = get_most(df)
|
152 |
|
153 |
if which_one == "models":
|
154 |
+
open_llm_leaderboard_get_org = get_ranking(open_llm_leaderboard, org)
|
155 |
+
|
156 |
data_rows.append({
|
157 |
"Author Name": org,
|
158 |
"Total Downloads": sum_info["Downloads"],
|
159 |
"Total Likes": sum_info["Likes"],
|
160 |
"Number of Models": num_things,
|
161 |
+
"Best Model On Open LLM Leaderboard": open_llm_leaderboard_get_org[1] if open_llm_leaderboard_get_org not in ["Not Found", "Error on Leaderboard"] else open_llm_leaderboard_get_org,
|
162 |
+
"Best Rank On Open LLM Leaderboard": open_llm_leaderboard_get_org[1] if open_llm_leaderboard_get_org not in ["Not Found", "Error on Leaderboard"] else open_llm_leaderboard_get_org,
|
163 |
"Average Downloads per Model": int(sum_info["Downloads"] / num_things) if num_things != 0 else 0,
|
164 |
"Average Likes per Model": int(sum_info["Likes"] / num_things) if num_things != 0 else 0,
|
165 |
"Most Downloaded Model": most_info["Most Download"]["id"],
|
|
|
203 |
})
|
204 |
|
205 |
leaderboard = pd.DataFrame(data_rows)
|
|
|
206 |
temp = ["Total Downloads"] if which_one != "spaces" else ["Total Likes"]
|
207 |
|
208 |
leaderboard = leaderboard.sort_values(by=temp, ascending=False)
|
|
|
292 |
|
293 |
🛠️ The leaderboard's backend mainly runs on the [Hugging Face Hub API](https://huggingface.co/docs/huggingface_hub/v0.5.1/en/package_reference/hf_api).
|
294 |
|
295 |
+
📒 **Note:** In the model's dataframe, there are some columns related to the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). This data is also retrieved through web scraping.
|
296 |
+
|
297 |
📒 **Note:** In trending models/datasets/spaces, first 300 models/datasets/spaces is being retrieved from huggingface.
|
298 |
|
299 |
## 🔍 Searching Organizations and Users
|
|
|
539 |
search_bar_in_df = gr.Textbox(placeholder="🔍 Search for a author", show_label=False)
|
540 |
|
541 |
with gr.TabItem("🏛️ Models", id=1):
|
542 |
+
columns_to_convert = ["Author Name", "Best Model On Open LLM Leaderboard", "Most Downloaded Model",
|
543 |
"Most Liked Model", "Trending Model"]
|
544 |
models_df = make_leaderboard(org_names_in_list, user_names_in_list, "models", group_models_by_author(all_models))
|
545 |
models_df = models_df_to_clickable(models_df, columns_to_convert, "models")
|
546 |
|
547 |
gr_models = gr.Dataframe(apply_headers(models_df, headers_models).head(400), headers=headers_models, interactive=True,
|
548 |
+
datatype=["str", "markdown", "str", "str", "str", "markdown", "str", "str", "str",
|
549 |
"markdown", "str", "markdown", "str", "markdown", "str", "str"])
|
550 |
|
551 |
with gr.TabItem("📊 Datasets", id=2):
|
|
|
607 |
filtered_spaces_orgs = update_table_spaces(orgs=True, users=False, return_all=True)['👤 Author Name'].tolist()
|
608 |
|
609 |
demo.launch(debug=True)
|
|